Share:
Share this content in WeChat
X
Review
Advances in neuroimaging studies of childhood autism
HU Shuang  LI Hong  ZHANG Yaqing  WANG Xi 

Cite this article as: Hu S, Li H, Zhang YQ, et al. Advances in neuroimaging studies of childhood autism[J]. Chin J Magn Reson Imaging, 2021, 12(11): 105-108. DOI:10.12015/issn.1674-8034.2021.11.026.


[Abstract] Autism is a widespread neurodevelopmental disorder in early childhood. Its incidence rate is increasing year by year and it causes children with lifelong mental disability and cannot take care of themselves, which brings heavy pressure to society and family. It is very important for the prognosis to take effective examination means to diagnose and intervene in the early stage of the disease. However, the early clinical symptoms of autism spectrum disorder (ASD) are not typical and the diagnosis is very difficult. With the development of neuroimaging, some studies have found abnormal changes in brain structure and function in children with ASD, which is particularly important for the early diagnosis and prognosis of clinical ASD.
[Keywords] autism;structural magnetic resonance imaging;diffusion tensor imaging;magnetic resonance spectral imaging;blood oxygenation level dependent-functional magnetic resonance imaging

HU Shuang   LI Hong*   ZHANG Yaqing   WANG Xi  

Department of Radiology, Renhe Hospital Affiliated to Three Gorges University, Yichang 443001, China

Li H, E-mail: 1741433022@qq.com

Conflicts of interest   None.

Received  2021-06-02
Accepted  2021-07-30
DOI: 10.12015/issn.1674-8034.2021.11.026
Cite this article as: Hu S, Li H, Zhang YQ, et al. Advances in neuroimaging studies of childhood autism[J]. Chin J Magn Reson Imaging, 2021, 12(11): 105-108. DOI:10.12015/issn.1674-8034.2021.11.026.

[1]
Payabvash S, Palacios EM, Owen JP, et al. White matter connectome edge density in children with autism spectrum disorders: potential imaging biomarkers using machine-learning models[J]. Brain Connect, 2019, 9(2): 209-220. DOI: 10.1089/brain.2018.0658.
[2]
Hyman SL, Levy SE, Myers SM. Council on children with disabilities, section on developmental and behavioral pediatrics. identification, evaluation, and management of children with autism spectrum disorder[J]. Pediatrics, 2020, 145(1): e20193447. DOI: 10.1542/peds.2019-3447.
[3]
Yamasue H, Domes G. Oxytocin and autism spectrum disorders[J]. Curr Top Behav Neurosci, 2018, 35: 449-465. DOI: :10.1007/7854_2017_24.
[4]
Liu X, Lin SF, Chen WX, et al. A Meta-analysis of the prevalence of autism spectrum disorders in Chinese children[J]. Chin J Child Health Care, 2018, 26(4): 402-406. DOI: 10.11852/zgetbjzz2018-26-04-15.
[5]
Maenner MJ, Shaw KA, Baio J, et al. Prevalence of Autism Spectrum Disorder Among Children Aged 8 Years - Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2016[J]. MMWR Surveill Summ, 2020, 69(4): 1-12. DOI: 10.15585/mmwr.ss6904a1.
[6]
Sun X, Allison C, Wei LP, et al. Autism prevalence in China is comparable to western prevalence[J]. Mol Autism, 2019, 10: 7. DOI: 10.1186/s13229-018-0246-0.
[7]
Saxena R, Babadi M, Namvarhaghighi H, et al. Role of environmental factors and epigenetics in autism spectrum disorders[J]. Prog Mol Biol Transl Sci, 2020, 173: 35-60. DOI: 10.1016/bs.pmbts.2020.05.002.
[8]
Ellegood J. Is there a hemispheric disconnect in neurodevelopmental disorders?[J]. Trends Neurosci, 2019, 42(12): 843-844. DOI: 10.1016/j.tins.2019.10.005.
[9]
Chen YH, Yang Y, Wei HE. The neural circuitry mechanism of autism spectrum disorder[J]. Chin J Behav Med Brain Sci, 2020, 29(12): 1148-1152. DOI: 10.3760/cma.j.cn371468-20200706-01536.
[10]
Jin YT, Chen SQ, Bao YX, et al. Research progress of assessment tools for children with autism spectrum disorders[J]. Nursing Practice and Res, 2021, 18(9), 1325-1329. DOI: 10.3969/j.issn.1672-9676.2021.09.016.
[11]
Wu CQ. Advances in MRI studies of autism spectrum disorders[J]. Int J Med Radiol, 2019, 42(6): 664-667. DOI: 10.19300/j.2019.Z7121.
[12]
Coburn KL, Williams DL. Development of neural structure and function in autism spectrum disorder: potential implications for learning language[J]. Am J Speech Lang Pathol, 2020, 29(4): 1783-1797. DOI: 10.1044/2020_AJSLP-19-00209.
[13]
Chu KK, Zhu JX, Xiao T, et al. A 2-year follow-up study of white matter volume in children aged 2 to 3 years with autism spectrum disorder[J]. Chin Clin J Pract Pediatr, 2018, 33(24): 1845-1850. DOI: 10.3760/cma.j.issn.2095-428X.2018.24.002.
[14]
Liu JK, Yao L, Zhang WJ, et al. Gray matter abnormalities in pediatric autism spectrum disorder: a meta-analysis with signed differential mapping[J]. Eur Child Adolesc Psychiatry, 2017, 26(8): 933-945. DOI: 10.1007/s00787-017-0964-4.
[15]
Yang X, Si TJ, Gong QY, et al. Brain gray matter alterations and associated demographic profiles in adults with autism spectrum disorder :a meta-analysis of voxel-based morphometry studies[J]. Aust N Z J Pasychiatry, 2016, 50(8): 741-753. DOI: 10.1177/0004867415623858.
[16]
Kohli JS, Kinnear MK, Fong CH, et al. Local cortical gyrification is increased in children with autism spectrum disorders, but decreases rapidly in adolescents[J]. Cereb Cortex, 2019, 29(6): 2412-2423. DOI: 10.1093/cercor/bhy111.
[17]
Van Rooij D, Anagnostou E, Arango C, et al. Cortical and subcortical brain morphometry differences between patients with autism spectrum disorder and healthy individuals across the lifespan: results from the ENIGMA ASD working group[J]. Am J Psychiatry, 2018, 175(4): 359-369. DOI: 10.1176/appi.ajp.2017.17010100.
[18]
Khundrakpam BS, Lewis JD, Kostopoulos P, et al. Cortical thickness abnormalities in autism spectrum disorders through late childhood, adolescence, and adulthood: a large-scale MRI study[J]. Cereb Cortex, 2017, 27(3): 1721-1731. DOI: 10.1093/cercor/bhx038.
[19]
Zhang L. DTI study of white matter fiber bundles associated with speech dysfunction in children with autism[D/OL]. Jinan: Shandong University Doctoral Dissertation. 2018.
[20]
Steinbrink C, Vogt K, Kastrup A, et al. The contribution of white and gray matter differences to developmental dyslexia:insights from DTI and VBM at 3.0 T[J]. Neuropsychologia, 2008, 46(13): 3170-3178. DOI: 10.1016/j.neuropsychologia.2008.07.015.
[21]
Lin ZC, Wang Y, Chen ZM, et al. Evaluation of children with autism by magnetic resonance multimodal imaging[J]. Chin Med Equipment, 2020, 35(10): 78-81. DOI: 10.3969/j.issn.1674-1633.2020.10.016.
[22]
Andrews DS, Lee JK, Harvey DJ, et al. A longitudinal study of white matter development in relation to changes in autism severity across early childhood[J]. Biol Psychiatry, 2021, 89(5): 424-432. DOI: 10.1016/j.biopsych.2020.10.013.
[23]
Temur HO, Yurtsever I, Yesil G, et al. Correlation between DTI findings and volume of corpus callosum in children with AUTISM[J]. Curr Med Imaging Rev, 2019, 15(9): 895-899. DOI: 10.2174/1573405614666181005114315.
[24]
Barnett BR, Casey CP, Torres-Velázquez M, et al. Convergent brain microstructure across multiple genetic models of schizophrenia and autism spectrum disorder: a feasibility study[J]. Magn Reson Imaging, 2020, 70: 36-42. DOI: 10.1016/j.mri.2020.04.002.
[25]
Hegarty JP, Gu M, Spielman DM, et al. A proton MR spectroscopy study of the thalamus in twins with autism spectrum disorder[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2018, 81: 153-160. DOI: 10.1016/j.pnpbp.2017.09.016.
[26]
Puts NAJ, Wodka EL, Harris AD, et al. Reduced GABA and altered somatosensory function in children with autism spectrum disorder[J]. Autism Res, 2017, 10(4): 608-619. DOI: 10.1002/aur.1691.
[27]
Umesawa Y, Atsumi T, Chakrabarty M, et al. GABA concentration in the left ventral premotor cortex associates with sensory hyper-responsiveness in autism spectrum disorders without intellectual disability[J]. Front Neurosci, 2020, 14: 482. DOI: 10.3389/fnins.2020.00482Edmondson.
[28]
Edmondson DA, Xia P, McNally Keehn R, et al. A magnetic resonance spectroscopy study of superior visual search abilities in children with autism spectrum disorder[J]. Autism Res, 2020, 13(4): 550-562. DOI: 10.1002/aur.2258.
[29]
Zürcher NR, Walsh EC, Phillips RD, et al. A simultaneous[11C] raclopride positron emission tomography and functional magnetic resonance imaging investigation of striatal dopamine binding in autism[J]. Transl Psychiatry, 2021, 11(1): 33. DOI: 10.1038/s41398-020-01170-0.
[30]
Lan ZH, Xu SJ, Wu YF, et al. Alterations of regional homogeneity in preschool boys with autism spectrum disorders[J]. Front Neurosci, 2021, 15: 644543. DOI: 10.3389/fnins.2021.644543.
[31]
Chen CM, Yang P, Wu MT, et al. Deriving and validating biomarkers associated with autism spectrum disorders from a large-scale resting-state database[J]. Sci Rep, 2019, 9(1): 9043. DOI: 10.1038/s41598-019-45465-9.
[32]
Borras-Ferris L, Pérez-Ramírez Ú, Moratal D. Link-level functional connectivity neuroalterations in autism spectrum disorder: a developmental resting-state fMRI study[J]. Diagnostics (Basel), 2019, 9(1): 32. DOI: 10.3390/diagnostics9010032.
[33]
Kim N, Choi US, Ha S, et al. Aberrant neural activation underlying idiom comprehension in korean children with high functioning autism spectrum disorder[J]. Yonsei Med J, 2018, 59(7): 897-903. DOI: 10.3349/ymj.2018.59.7.897.
[34]
Bartolotti J, Sweeney JA, Mosconi MW. Functional brain abnormalities associated with comorbid anxiety in autism spectrum disorder[J]. Dev Psychopathol, 2020, 32(4): 1273-1286. DOI: 10.1017/S0954579420000772.
[35]
Pinti P, Tachtsidis I, Hamilton A, et al. The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience[J]. Ann N Y Acad Sci, 2020, 1464(1): 5-29. DOI: 10.1111/nyas.13948. DOI: .
[36]
Liu HT, Liu YH. Near-infrared optical brain imaging and central plasticity of cochlear implant patients[J/OL]. Audiology and speech diseases magazine, 2021. https://kns.cnki..net/KCMS/detail/42.139R20210520.1138.024.html.
[37]
Mazzoni A, Grove R, Eapen V, et al. The promise of functional near-infrared spectroscopy in autism research: what do we know and where do we go?[J]. Soc Neurosci, 2019, 14(5): 505-518. DOI: 10.1080/17470919.2018.1497701.
[38]
Su WC, Culotta M, Mueller J, et al. Differences in cortical activation patterns during action observation, action execution, and interpersonal synchrony between children with or without autism spectrum disorder (ASD): an fNIRS pilot study[J]. PLoS One, 2020, 15(10): e0240301. DOI: 10.1371/journal.pone.0240301.
[39]
Xu LY, Geng XL, He XY, et al. Prediction in autism by deep learning short-time spontaneous hemodynamic fluctuations[J]. Front Neurosci, 2019, 13: 1120. DOI: 10.3389/fnins.2019.01120.
[40]
Haweel R, Shalaby A, Mahmoud A, et al. A robust DWT-CNN-based CAD system for early diagnosis of autism using task-based fMRI[J]. Med Phys, 2021, 48(5): 2315-2326. DOI: 10.1002/mp.14692.

PREV Advances in brain magnetic resonance imaging of postpartum depression
NEXT Progresses of quantitative magnetic resonance imaging for myocardial tissue evaluation
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn