Share:
Share this content in WeChat
X
Review
Progresses of quantitative magnetic resonance imaging for myocardial tissue evaluation
SONG Yu  GUO Yingkun  XU Huayan  LI Xuesheng  LI Jun  FU Chuan 

Cite this article as: Song Y, Guo YK, Xu HY, et al. Progresses of quantitative magnetic resonance imaging for myocardial tissue evaluation[J]. Chin J Magn Reson Imaging, 2021, 12(11): 109-112, 121. DOI:10.12015/issn.1674-8034.2021.11.027.


[Abstract] Cardiomyopathy is a general term for a type of disease mainly composed of cardiomyopathy. It is often accompanied by cardiac dysfunction and severely endangers the lives of patients. In recent years, with the rapid development and advancement of cardiac magnetic resonance quantitative imaging technology, and due to its characteristics of no ionizing radiation and high resolution, it has a greater advantage in the evaluation of myocardial diseases. Among them, cardiac magnetic resonance quantitative imaging techniques such as longitudinal relaxation time quantitative imaging (T1 mapping), transverse relaxation time quantitative imaging (T2 mapping), T2* imaging quantitative imaging (T2* mapping), feature tracking (FT) and late gadolinium enhancement (LGE) can analyze myocardial tissue non-invasively and quantitatively, reflect the changes of myocardial tissue, and provide important quantitative information for the changes of different types of myocardial disease. The progresses of magnetic resonance quantitative imaging in evaluation of myocardial tissue were reviewed in this paper.
[Keywords] myocardial tissue;magnetic resonance imaging;quantitative assessment;noninvasive;cardiac function

SONG Yu   GUO Yingkun   XU Huayan   LI Xuesheng   LI Jun   FU Chuan*  

Department of Radiology, West China Second Hospital, Sichuan University, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Chengdu 610041, China

Fu C, E-mail: fchuandocter@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS This article is supported by the National Natural Science Found (No. 81901712).
Received  2021-07-12
Accepted  2021-08-04
DOI: 10.12015/issn.1674-8034.2021.11.027
Cite this article as: Song Y, Guo YK, Xu HY, et al. Progresses of quantitative magnetic resonance imaging for myocardial tissue evaluation[J]. Chin J Magn Reson Imaging, 2021, 12(11): 109-112, 121. DOI:10.12015/issn.1674-8034.2021.11.027.

[1]
Annual Report on Cardiovascular health and diseases in China 2019[J]. J Cardiovascular Pulmonary Dis, 2020, 39(9): 1157-1162. DOI: 10.3969/j.issn.1007-5062.2020.10.001.
[2]
Lennon RP, Claussen KA, Kuersteiner KA. State of the heart: an overview of the disease burden of cardiovascular disease from an epidemiologic perspective[J]. Prim Care, 2018, 45(1): 1-15. DOI: 10.1016/j.pop.2017.11.001.
[3]
Cardiovascular branch of Chinese Medical Association, Cardiovascular physician branch of Chinese Medical Association, Editorial board of central vascular disease journal. Consensus of chinese experts on clinical application of magnetic resonance imaging in cardiomyopathy[J]. Chin J Cardiol, 2015, 43(08): 673-681. DOI: 10.3760/cma.j.issn.0253-3758.2015.08.007.
[4]
Hinojar R, Foote L, Arroyo Ucar E, et al. Native T1 in discrimination of acute and convalescent stages in patients with clinical diagnosis of myocarditis: a proposed diagnostic algorithm using CMR[J]. JACC Cardiovasc Imaging, 2015, 8(1): 37-46. DOI: 10.1016/j.jcmg.2014.07.016.
[5]
Diao KY, Yang ZG, Xu HY, et al. Histologic validation of myocardial fibrosis measured by T1 mapping: a systematic review and meta-analysis[J]. J Cardiovasc Magn Reson, 2016, 18(1): 92. DOI: 10.1186/s12968-016-0313-7.
[6]
Zhang L, Yang ZG, Xu HY, et al. Histological validation of cardiovascular magnetic resonance T1 mapping for assessing the evolution of myocardial injury in myocardial infarction: an experimental study[J]. Korean J Radiol, 2020, 21(12): 1294-1304. DOI: 10.3348/kjr.2020.0107.
[7]
Puntmann VO, Voigt T, Chen Z, et al. Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy[J]. JACC Cardiovasc Imaging, 2013, 6(4): 475-84. DOI: 10.1016/j.jcmg.2012.08.019.
[8]
Xu J, Zhuang B, Sirajuddin A, et al. MRI T1 mapping in hypertrophic cardiomyopathy: evaluation in patients without late gadolinium enhancement and hemodynamic obstruction[J]. Radiology, 2019, 294(2): 275-286. DOI: 10.1148/radiol.2019190651.
[9]
Mewton N, Liu CY, Croisille P, et al. Assessment of myocardial fibrosis with cardiovascular magnetic resonance[J]. J Am Coll Cardiol, 2011, 57(8): 891-903. DOI: 10.1016/j.jacc.2010.11.013.
[10]
Puntmann VO, Carr-White G, Jabbour A, et al. T1-mapping and outcome in nonischemic cardiomyopathy: all-cause mortality and heart failure[J]. JACC Cardiovasc Imaging, 2016, 9(1): 40-50. DOI: 10.1016/j.jcmg.2015.12.001.
[11]
Zhuang B, Sirajuddin A, Wang S, et al. Prognostic value of T1 mapping and extracellular volume fraction in cardiovascular disease: a systematic review and meta-analysis[J]. Heart Fail Rev, 2018, 23(5): 723-731. DOI: 10.1007/s10741-018-9718-8.
[12]
Vita T, Gräni C, Abbasi SA, et al. Comparing CMR mapping methods and myocardial patterns toward heart failure outcomes in nonischemic dilated cardiomyopathy[J]. JACC Cardiovasc Imaging, 2019, 12(8Pt 2): 1659-1669. DOI: 10.1016/j.jcmg.2018.08.021.
[13]
Ferreira VM, Piechnik SK. CMR parametric mapping as a tool for myocardial tissue. characterization[J]. Korean Circ J, 2020, 50(8): 658-676. DOI: 10.4070/kcj.2020.0157.
[14]
Kranzusch R, Aus dem Siepen F, Wiesemann S, et al. Z-score mapping for standardized analysis and reporting of cardiovascular magnetic resonance modified Look-Locker inversion recovery (MOLLI) T1 data: Normal behavior and validation in patients with amyloidosis[J]. J Cardiovasc Magn Reson, 2020; 22(1): 6. DOI: 10.1186/s12968-019-0595-7.
[15]
Messroghli DR, Moon JC, Ferreira VM, et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI)[J]. J Cardiovasc Magn Reson, 2017, 19(1): 75. DOI: 10.1186/s12968-017-0389-8.
[16]
Liu A, Wijesurendra RS, Francis JM, et al. Adenosine stress and rest T1 mapping can differentiate between ischemic, infarcted, remote, and normal myocardium without the need for gadolinium contrast agents[J]. JACC Cardiovasc Imaging, 2016, 9(1): 27-36. DOI: 10.1016/j.jcmg.2015.08.018.
[17]
Kim PK, Hong YJ, Im DJ, et al. Myocardial T1 and T2 mapping: techniques and clinical applications[J]. Korean J Radiol, 2017, 18(1): 113-131. DOI: 10.3348/kjr.2017.18.1.113.
[18]
Park CH, Choi EY, Kwon HM, et al. Quantitative T2 mapping for detecting myocardial edema after reperfusion of myocardial infarction: validation and comparison with T2-weighted images[J]. Int J Cardiovasc Imaging, 2013, 29(Suppl 1): 65-72. DOI: 10.1007/s10554-013-0256-0.
[19]
Spieker M, Katsianos E, Gastl M, et al. T2 mapping cardiovascular magnetic resonance identifies the presence of myocardial inflammation in patients with dilated cardiomyopathy as compared to endomyocardial biopsy[J]. Eur Heart J Cardiovasc Imaging, 2018, 19(5): 574-582. DOI: 10.1093/ehjci/jex230.
[20]
Huang L, Ran LP, Zhao PJ, et al. MRI native T1 and T2 mapping of myocardial segments in hypertrophic cardiomyopathy: tissue remodeling manifested prior to structure changes[J]. Br J Radiol, 2019, 92(1104): 20190634. DOI: 10.1259/bjr.20190634.
[21]
Pepe A, Meloni A, Rossi G, et al. Prediction of cardiac complications for thalassemia major in the widespread cardiac magnetic resonance era: a prospective multicentre study by a multi-parametric approach[J]. Eur Heart J Cardiovasc Imaging, 2018, 19(3): 299-309. DOI: 10.1093/ehjci/jex012.
[22]
Casale M, Filosa A, Ragozzino A, et al. Long-term improvement in cardiac magnetic resonance in β-thalassemia major patients treated with deferasirox extends to patients with abnormal baseline cardiac function[J]. Am J Hematol, 2019, 94(3): 312-318. DOI: 10.1002/ajh.25370.
[23]
Lota AS, Gatehouse PD, Mohiaddin RH. T2 mapping and T2* imaging in heart failure[J]. Heart Fail Rev, 2017, 22(4): 431-440. DOI: 10.1007/s10741-017-9616-5.
[24]
Anderson LJ, Holden S, Davis B, et al. Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload[J]. Eur Heart J, 2001, 22(23): 2171-2179. DOI: 10.1053/euhj.2001.2822.
[25]
Carpenter JP, He T, Kirk P, et al. On T2* magnetic resonance and cardiac iron[J]. Circulation, 2011, 123(14): 1519-1528. DOI: 10.1161/CIRCULATIONAHA.110.007641.
[26]
Koohi F, Kazemi T, Miri-Moghaddam E. Cardiac complications and iron overload in beta. thalassemia major patients-a systematic review and meta-analysis[J]. Ann Hematol, 2019, 98(6): 1323-1331. DOI: 10.1007/s00277-019-03618-w.
[27]
Jin N, da Silveira JS, Jolly MP, et al. Free-breathing myocardial T2* mapping using GRE-EPI and automatic non-rigid motion correction[J]. J Cardiovasc Magn Reson, 2015, 17: 113. DOI: 10.1186/s12968-015-0216-z.
[28]
Pennell DJ, Udelson JE, Arai AE, et al. Cardiovascular function and treatment in β-thalassemia major: a consensus statement from the American Heart Association[J]. Circulation, 2013, 128(3): 281-308. DOI: 10.1161/CIR.0b013e31829b2be6.
[29]
Parsaee M, Akiash N, Azarkeivan A, et al. The correlation between cardiac magnetic resonance T2* and left ventricular global longitudinal strain in people with β-thalassemia[J]. Echocardiography, 2018, 35(4): 438-444. DOI: 10.1111/echo.13801.
[30]
Gastl M, Gotschy A, von Spiczak J, et al. Cardiovascular magnetic resonance T2* mapping for. structural alterations in hypertrophic cardiomyopathy[J]. Eur J Radiol Open, 2019, 6: 78-84. DOI: 10.1016/j.ejro.2019.01.007.
[31]
Robbers LFHJ, Nijveldt R, Beek AM, et al. The influence of microvascular injury on native. T1 and T2* relaxation values after acute myocardial infarction: implications for non-contrast-enhanced infarct assessment[J]. Eur Radiol, 2018, 28(2): 824-832. DOI: 10.1007/s00330-017-5010-x.
[32]
Muser D, Castro SA, Santangeli P, et al. Clinical applications of feature-tracking cardiac. magnetic resonance imaging[J]. World J Cardiol, 2018, 10(11): 210-221. DOI: 10.4330/wjc.v10.i11.210.
[33]
Onishi T, Saha SK, Delgado-Montero A, et al. Global longitudinal strain and global. circumferential strain by speckle-tracking echocardiography and feature-tracking cardiac magnetic resonance imaging: comparison with left ventricular ejection fraction[J]. J Am Soc Echocardiogr, 2015, 28(5): 587-96. DOI: 10.1016/j.echo.2014.11.018.
[34]
Czimbalmos C, Csecs I, Dohy Z, et al. Cardiac magnetic resonance based deformation imaging: role of feature tracking in athletes with suspected arrhythmogenic right ventricular cardiomyopathy[J]. Int J Cardiovasc Imaging, 2019, 35(3): 529-538. DOI: 10.1007/s10554-018-1478-y.
[35]
Berganza FM, de Alba CG, Özcelik N, et al. Cardiac magnetic resonance feature tracking. biventricular two-dimensional and three-dimensional strains to evaluate ventricular function in children after repaired tetralogy of fallot as compared with healthy children[J]. Pediatr Cardiol, 2017, 38(3): 566-574. DOI: 10.1007/s00246-016-1549-6.
[36]
Reindl M, Tiller C, Holzknecht M, et al. Prognostic implications of global longitudinal strain by feature-tracking cardiac magnetic resonance in ST-elevation myocardial infarction[J]. Circ Cardiovasc Imaging, 2019, 12(11): e009404. DOI: 10.1161/CIRCIMAGING.119.009404.
[37]
Leng S, Ge H, He J, et al. Long-term prognostic value of cardiac MRI left atrial strain in st-segment elevation myocardial infarction[J]. Radiology, 2020, 296(2): 299-309. DOI: 10.1148/radiol.2020200176.
[38]
Claus P, Omar AMS, Pedrizzetti G, et al. Tissue tracking technology for assessing cardiac. mechanics: principles, normal values, and clinical applications[J]. JACC Cardiovasc Imaging, 2015, 8(12): 1444-1460. DOI: 10.1016/j.jcmg.2015.11.001.
[39]
van Everdingen WM, Zweerink A, Nijveldt R, et al. Comparison of strain imaging techniques. in CRT candidates: CMR tagging, CMR feature tracking and speckle tracking echocardiography[J]. Int J Cardiovasc Imaging, 2018, 34(3): 443-456. DOI: 10.1007/s10554-017-1253-5.
[40]
Chery G, Kamp N, Kosinski AS, et al. Prognostic value of myocardial fibrosis on cardiac. magnetic resonance imaging in patients with ischemic cardiomyopathy: a systematic review[J]. Am Heart J, 2020, 229:52-60. DOI: 10.1016/j.ahj.2020.08.004.
[41]
Hanneman K, Karur GR, Wasim S, et al. Prognostic significance of cardiac magnetic resonance imaging late gadolinium enhancement in fabry disease[J]. Circulation, 2018, 138(22): 2579-2581. DOI: 10.1161/CIRCULATIONAHA.118.037103.
[42]
Hanneman K, Karur GR, Wasim S, et al. Left ventricular hypertrophy and late gadolinium. enhancement at cardiac MRI are associated with adverse cardiac events in fabry disease[J]. Radiology, 2020, 294(1): 42-49. DOI: 10.1148/radiol.2019191385.
[43]
Freitas P, Ferreira AM, Arteaga-Fernández E, et al. The amount of late gadolinium enhancement outperforms current guideline-recommended criteria in the identification of patients with hypertrophic cardiomyopathy at risk of sudden cardiac death[J]. J Cardiovasc Magn Reson, 2019, 21(1): 50. DOI: 10.1186/s12968-019-0561-4.
[44]
Raman B, Ariga R, Spartera M, et al. Progression of myocardial fibrosis in hypertrophic cardiomyopathy: mechanisms and clinical implications[J]. Eur Heart J Cardiovasc Imaging, 2019, 20(2): 157-167. DOI: 10.1093/ehjci/jey135.
[45]
Le Bihan D, Breton E, Lallemand D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders[J]. Radiology, 1986, 161(2): 401-407. DOI: 10.1148/radiology.161.2.3763909.
[46]
Le Bihan D, Breton E, Lallemand D, et al. Separation of diffusion and perfusion in intravoxel. incoherent motion MR imaging[J]. Radiology, 1988, 168(2): 497-505. DOI: 10.1148/radiology.168.2.3393671.
[47]
Winfield JM, Orton MR, Collins DJ, et al. Separation of type and grade in cervical tumours. using non-mono-exponential models of diffusion-weighted MRI[J]. Eur Radiol, 2017, 27(2): 627-636. DOI: 10.1007/s00330-016-4417-0.
[48]
Kim B, Lee SS, Sung YS, et al. Intravoxel incoherent motion diffusion-weighted imaging of. the pancreas: characterization of benign and malignant pancreatic pathologies[J]. J Magn Reson Imaging, 2017, 45(1): 260-269. DOI: 10.1002/jmri.25334.
[49]
An DA, Shi RY, Wu R, et al. Different myocardial perfusion status in acute myocardial. infarction and infarct-like myocarditis: a novel intravoxel incoherent motion diffusion-weighted imaging based mri study[J]. Acad Radiol, 2020, 27(8): 1093-1102. DOI: 10.1016/j.acra.2019.10.019.
[50]
An DA, Chen BH, Wu Rui, et al. Diagnostic performance of intravoxel incoherent motion. diffusion-weighted imaging in the assessment of the dynamic status of myocardial perfusion[J]. J Magn Reson Imaging, 2018, 48(6): 1602-1609. DOI: 10.1002/jmri.26179.

PREV Advances in neuroimaging studies of childhood autism
NEXT Research progress of MRI radiomics in cardiac diseases
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn