Share:
Share this content in WeChat
X
Clinical Article
Radiomics features of sub-attention region on the diagnosis of the extracapsular extension of the prostate cancer on magnetic resonance imaging
ZHANG Yihong  HOU Ying  BAO Jie  WANG Chenglong  SONG Yang  ZHANG Yudong  YANG Guang 

Cite this article as: Zhang YH, Hou Y, Bao J, et al. Radiomics features of sub-attention region on the diagnosis of the extracapsular extension of the prostate cancer on magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2021, 12(12): 39-43, 66. DOI:10.12015/issn.1674-8034.2021.12.008.


[Abstract] Objective Extract radiomics features from the sub-regions of the generated attention region on magnetic resonance images to help diagnose the extracapsular extension (ECE) of the prostate cancer. Materials and Methods: Seven hundred and eighteen cases with prostate cancer diagnosis including T2 weighted images and apparent diffusion coefficient maps were selected in this study, and divided into 574 training cases and 144 test cases. An attention ROI was generated according to the ROIs of the prostate gland and the prostate cancer lesion. Further, sub-regions of the attention ROI were split into the background, prostate gland and lesion to be used for feature extraction. Radiomics models were built based on features from prostate gland (ModelPro), prostate cancer (ModelPCa), attention ROI (ModelAtt), and sub-regions of attention ROI (ModelRegion), respectively. The area under the receiver operating characteristic (ROC) curve (AUC), confusion matrix and the decision analysis curve were used for statistical analysis.Results The AUCs of the ModelPro were 0.740 and 0.746, and that of ModelPCa were 0.742 and 0.755 on the training and the test cohorts, respectively. The AUC of ModelAtt was higher and was achieved of 0.732 and 0.766 on the training and test cohorts. Compared to the above models, ModelRegion performed best to achieved an AUC of 0.794 and 0.792 on the training and test cohorts.Conclusion The radiomics model based on the attention ROI and the sub-regions performed more accurately than the usual prostate gland and cancer lesion, and could provide aids in the ECE diagnosis in the clinics.
[Keywords] radiomics;magnetic resonance imaging;prostate cancer;extracapsular extension;attention region of interest

ZHANG Yihong1   HOU Ying2   BAO Jie3   WANG Chenglong1   SONG Yang1*   ZHANG Yudong2   YANG Guang1  

1 Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China

2 Department of Radiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China

3 Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China

Song Y, E-mail: songyangmri@gmail.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Found of China (No. 61731009); Sponsored by Shanghai Pujiang Program (No. 2020PJD016).
Received  2021-06-09
Accepted  2021-11-10
DOI: 10.12015/issn.1674-8034.2021.12.008
Cite this article as: Zhang YH, Hou Y, Bao J, et al. Radiomics features of sub-attention region on the diagnosis of the extracapsular extension of the prostate cancer on magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2021, 12(12): 39-43, 66. DOI:10.12015/issn.1674-8034.2021.12.008.

[1]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020[J]. CA: a cancer journal for clinicians, 2020, 70(1): 7-30. DOI: 10.3322/caac.21590.
[2]
Tollefson MK, Karnes RJ, Rangel LJ, et al. The Impact of Clinical Stage on Prostate Cancer Survival Following Radical Prostatectomy[J]. J Urology, 2013, 189(5): 1707-1712. DOI: 10.1016/j.juro.2012.11.065.
[3]
Wheeler TM, Dillioglugil Ö, Kattan MW, et al. Clinical and pathological significance of the level and extent of capsular invasion in clinical stage T1-2 prostate cancer[J]. Human Pathology, 1998, 29(8): 856-862. DOI: 10.1016/S0046-8177(98)90457-9.
[4]
Partin AW, Borland RN, Epstein JI, et al. Influence of Wide Excision of the Neurovascular Bundle(s) on Prognosis in Men with Clinically Localized Prostate Cancer with Established Capsular Penetration[J]. J Urology, 1993, 150(1): 142-146. DOI: 10.1016/S0022-5347(17)35416-2.
[5]
Cooperberg MR, Lubeck DP, Mehta SS, et al. Time trends in clinical risk stratification for prostate cancer: implications for outcomes (data from CaPSURE)[J]. J Urology, 2003, 170(6Pt 2): S21-S25. DOI: 10.1097/01.ju.0000095025.03331.c6.
[6]
Feng TS, Sharif-Afshar AR, Wu J, et al. Multiparametric MRI Improves Accuracy of Clinical Nomograms for Predicting Extracapsular Extension of Prostate Cancer[J]. J Urology, 2015, 86(2): 332-337. DOI: 10.1016/j.urology.2015.06.003.
[7]
Cerantola Y, Valerio M, Marchini AK, et al. Can 3T multiparametric magnetic resonance imaging accurately detect prostate cancer extracapsular extension?[J]. Can Urol Assoc J, 2013, 7(11-12): E699-E703. DOI: 10.5489/cuaj.245.
[8]
Feng TS, Sharif-Afshar AR, Smith SC, et al. Multiparametric magnetic resonance imaging localizes established extracapsular extension of prostate cancer[J]. Urol Oncol: Seminars and Original Investigations, 2015, 33(3): 109.e15-e22. DOI: 10.1016/j.urolonc.2014.11.007.
[9]
Roethke MC, Lichy MP, Kniess M, et al. Accuracy of preoperative endorectal MRI in predicting extracapsular extension and influence on neurovascular bundle sparing in radical prostatectomy[J]. World J Urol, 2013, 31(5): 1111-1116. DOI: 10.1007/s00345-012-0826-0.
[10]
Freifeld Y, Diaz de Leon A, Xi Y, et al. Diagnostic Performance of Prospectively Assigned Likert Scale Scores to Determine Extraprostatic Extension and Seminal Vesicle Invasion With Multiparametric MRI of the Prostate[J]. AJR Am J Roentgenol, 2018, 212(3): 576-581. DOI: 10.2214/AJR.18.20320.
[11]
Ma S, Xie H, Wang H, et al. Preoperative Prediction of Extracapsular Extension: Radiomics Signature Based on Magnetic Resonance Imaging to Stage Prostate Cancer[J]. Mol Imaging Biol, 2020, 22(3): 711-721. DOI: 10.1007/s11307-019-01405-7.
[12]
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: Extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
[13]
Zhang H, Mao N, Xie HZ, et al. Predicting clinically significant prostate cancer based on perilesional and intralesional MRI radiomics features[J]. Chin J Magn Reson Imaging, 2021, 12(1): 48-52. DOI: 10.12015/issn.1674-8034.2021.01.010.
[14]
Zhang H, Huang C, Wang B. Advances in clinical application of radiomics in prostate cancer[J]. Chin J Magn Reson Imaging, 2020, 11(11): 1063-1066. DOI: 10.12015/issn.1674-8034.2020.11.025.
[15]
Ma S, Xie H, Wang H, et al. MRI-Based Radiomics Signature for the Preoperative Prediction of Extracapsular Extension of Prostate Cancer[J]. J Magn Reson Imaging, 2019, 50(6): 1914-1925. DOI: 10.1002/jmri.26777.
[16]
Bai H, Xia W, Ji X, et al. Multiparametric Magnetic Resonance Imaging-Based Peritumoral Radiomics for Preoperative Prediction of the Presence of Extracapsular Extension With Prostate Cancer[J]. J Magn Reson Imaging, 2021. DOI: 10.1002/jmri.27678.
[17]
Klein S, Staring M, Murphy K, et al. elastix: A Toolbox for Intensity-Based Medical Image Registration[J]. IEEE Trans Med Imaging, 2010, 29(1): 196-205. DOI: 10.1109/TMI.2009.2035616.
[18]
Napel S, Mu W, Jardim-Perassi BV, et al. Quantitative imaging of cancer in the postgenomic era: Radio(geno)mics, deep learning, and habitats[J]. Cancer, 2018, 124(24): 4633-4649. DOI: 10.1002/cncr.31630.
[19]
Song Y, Zhang J, Zhang YD, et al. FeAture Explorer (FAE): A tool for developing and comparing radiomics models[J]. PLOS ONE, 2020, 15(8): e0237587. DOI: 10.1371/journal.pone.0237587.
[20]
Rasmussen C, Ghahramani Z. Advances in Neural Information Processing Systems 13: Proceedings of the 2000 Conference[C]. Mit Pr, 2001.
[21]
Zanelli E, Giannarini G, Cereser L, et al. Head-to-head comparison between multiparametric MRI, the partin tables, memorial sloan kettering cancer center nomogram, and CAPRA score in predicting extraprostatic cancer in patients undergoing radical prostatectomy[J]. J Magn Reson Imaging, 2019, 50(5): 1604-1613. DOI: 10.1002/jmri.26743.
[22]
Cuocolo R, Stanzione A, Faletti R, et al. MRI index lesion radiomics and machine learning for detection of extraprostatic extension of disease: a multicenter study[J]. Eur Radiol, 2021, 31(10): 7575-7583. DOI: 10.1007/s00330-021-07856-3.
[23]
Xu L, Zhang G, Zhao L, et al. Radiomics Based on Multiparametric Magnetic Resonance Imaging to Predict Extraprostatic Extension of Prostate Cancer[J]. Front Oncol, 2020, 10: 940. DOI: 10.3389/fonc.2020.00940.
[24]
Traverso A, Wee L, Dekker A, et al. Repeatability and Reproducibility of Radiomic Features: A Systematic Review[J]. Int J Radiat Oncol Biol Phys, 2018, 102(4): 1143-1158. DOI: 10.1016/j.ijrobp.2018.05.053.
[25]
Ligero M, Torres G, Sanchez C, et al. Selection of Radiomics Features based on their Reproducibility[C]. Annu Int Conf IEEE Eng Med Biol Soc, 2019, 403-408. DOI: 10.1109/EMBC.2019.8857879.

PREV Application of different radiomics models based on MRI conventional T2WI in preoperative tri-classification of ovarian epithelial tumors
NEXT USPIO enhanced SWI MRI to evaluate the effects of cinobufacini on a nude orthotopic hepatocellular carcinoma tumor model
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn