Share:
Share this content in WeChat
X
Review
Research progress of magnetic resonance imaging in predicting postoperative recurrence patterns of high-grade gliomas
LIU Maomao  HE Yexin 

Cite this article as: Liu MM, He YX. Research progress of magnetic resonance imaging in predicting postoperative recurrence patterns of high-grade gliomas[J]. Chin J Magn Reson Imaging, 2021, 12(12): 99-101. DOI:10.12015/issn.1674-8034.2021.12.023.


[Abstract] Glioma is the most common central nervous system malignant tumor. High-grade glioma (HGG) is prone to high recurrence rate and poor prognosis after surgery due to complex biological behaviors. Gliomas that recur after surgery are often more malignant and more aggressive. The survival prognosis of HGG patients with different recurrence patterns is also very different. Therefore, early and accurate prediction of HGG recurrence patterns is of great significance for patients to choose the best treatment plan. In predicting the recurrence pattern of HGG, MRI can use different MRI sequences to evaluate the tumor factors of the patient through preoperative location, volume, morphology and other indicators, and combine clinical factors to make more accurate prediction of recurrence patterns.
[Keywords] magnetic resonance imaging;high-grade glioma;recurrence pattern;progress

LIU Maomao1   HE Yexin2*  

1 Shanxi Medical University, Taiyuan 030001, China

2 Department of MRI, Affiliated People's Hospital of Shanxi Medical University, Taiyuan 030012, China.

He YX, E-mail: heyexinty2000@sina.com

Conflicts of interest   None.

Received  2021-08-11
Accepted  2021-11-05
DOI: 10.12015/issn.1674-8034.2021.12.023
Cite this article as: Liu MM, He YX. Research progress of magnetic resonance imaging in predicting postoperative recurrence patterns of high-grade gliomas[J]. Chin J Magn Reson Imaging, 2021, 12(12): 99-101. DOI:10.12015/issn.1674-8034.2021.12.023.

[1]
Garcia Catherine R, Slone Stacey A, Dolecek Therese A, et al. Primary central nervous system tumor treatment and survival in the United States, 2004-2015[J]. J Neurooncol, 2019, 144(1): 179-191. DOI: 10.1007/s11060-019-03218-8.
[2]
Jiang HH, Yu KF, Li MX, et al. Classification of Progression Patterns in Glioblastoma: Analysis of Predictive Factors and Clinical Implications[J]. Front Oncol, 2020, 10(10): 590648. DOI: 10.3389/fonc.2020.590648.
[3]
Zheng L, Zhou ZR, Yu QQ, et al. The Definition and Delineation of the Target Area of Radiotherapy Based on the Recurrence Pattern of Glioblastoma After Temozolomide Chemoradiotherapy[J]. Front Oncol, 2020, 10: 615368. DOI: 10.3389/fonc.2020.615368.
[4]
Ge SN, Shi YW, Zhu G, et al. Molecular Pathological Markers Correlated With the Recurrence Patterns of Glioma[J]. Front Oncol, 2020, 10(10): 565045. DOI: 10.3389/fonc.2020.565045.
[5]
Piper RJ, Senthil KK, Yan JL, et al. Neuroimaging classification of progression patterns in glioblastoma: a systematic review[J]. J Neurooncol, 2018, 139(1): 77-88. DOI: 10.1007/s11060-018-2843-3.
[6]
Zhang KX, Ji XL, Yuan T, et al. Preliminary Study of MRI Recurrence Pattern of High-Grade Glioma and Its Effect on Survivall[J]. J Clin Radiol, 2021, 40(3): 601-606. DOI: 10.13437/j.cnki.jcr.2021.03.041.
[7]
Tini P, Nardone V, Pastina P, et al. Epidermal Growth Factor Receptor Expression Predicts Time and Patterns of Recurrence in Patients with Glioblastoma After Radiotherapy and Temozolomide[J]. World Neurosurg, 2018, 109(109): e662-e668. DOI: 10.1016/j.wneu.2017.10.052.
[8]
Yoon N, Kim HS, Lee JW, et al. Targeted Genomic Sequencing Reveals Different Evolutionary Patterns Between Locally and Distally Recurrent Glioblastomas[J]. Cancer Genomics Proteomics, 2020, 17(6): 803-812. DOI: 10.21873/cgp.20234.
[9]
Yamaki T, Shibahra I, Matsuda KI, et al. Relationships between recurrence patterns and subventricular zone involvement or CD133 expression in glioblastoma. J Neurooncol, 2020, 146(3): 489-499. DOI: 10.1007/s11060-019-03381-y.
[10]
Back M, Jayamanne D, Brazier D, et al. Pattern of failure in anaplastic glioma patients with an IDH1/2 mutation. Rezidivmuster bei Patienten mit anaplastischem Glioma mit einer IDH1/2-Mutation[J]. Strahlenther Onkol, 2020, 196(1): 31-39. DOI: 10.1007/s00066-019-01467-0.
[11]
Jungk C, Warta R, Mock A, et al. Location-Dependent Patient Outcome and Recurrence Patterns in IDH1-Wildtype Glioblastoma[J]. Cancers (Basel), 2019, 11(1): 122. DOI: 10.3390/cancers11010122.
[12]
Liu SY, Zhao Q, Shi WY, et al. Advances in radiotherapy and comprehensive treatment of high-grade glioma: immunotherapy and tumor-treating fields[J]. J Cancer, 2021, 12(4): 1094-1104. DOI: 10.7150/jca.51107.
[13]
De Bonis P, Anile C, Pompucci A, et al. The influence of surgery on recurrence pattern of glioblastoma[J]. Clin Neurol Neurosurg, 2013, 115(1): 37-43. DOI: 10.1016/j.clineuro.2012.04.005.
[14]
Choi SW, Cho KR, Choi JW, et al. Pattern of disease progression following stereotactic radiosurgery in malignant glioma patients[J]. J Clin Neurosci, 2020, 76(76): 61-66. DOI: 10.1016/j.jocn.2020.04.047.
[15]
Choi Seo Hee, Kim Jun Won, Chang Jee Suk, et al. Impact of Including Peritumoral Edema in Radiotherapy Target Volume on Patterns of Failure in Glioblastoma following Temozolomide-based Chemoradiotherapy[J]. Sci Rep, 2017, 7: 42148. DOI: 10.1038/srep42148.
[16]
Ivanov M, Ciurea AV. Neuronavigation. Principles. Surgical technique[J]. J Med Life, 2009, 2(1): 29-35.
[17]
Tejada S, Aldave G, Marigil M, et al. Factors associated with a higher rate of distant failure after primary treatment for glioblastoma[J]. J Neurooncol, 2014, 116(1): 169-75. DOI: 10.1007/s11060-013-1279-z.
[18]
Huang RH, Wang TW, Liao ZJ, et al. A retrospective analysis of the risk factors affecting recurrence time in patients with recurrent glioblastoma[J]. Ann Palliat Med, 2021, 10: 5391-5399. DOI: 10.21037/apm-21-823.
[19]
Mistry AM, Kelly PD, Gallant JN, et al. Comparative Analysis of Subventricular Zone Glioblastoma Contact and Ventricular Entry During Resection in Predicting Dissemination, Hydrocephalus, and Survival[J]. Neurosurgery, 2019, 85(5): E924-E932. DOI: 10.1093/neuros/nyz144.
[20]
Haque W, Thong Y, Verma V, et al. Patterns of management and outcomes of unifocal versus multifocal glioblastoma[J].J Clin Neurosci, 2020, 74(74): 155-159. DOI: 10.1016/j.jocn.2020.01.086.
[21]
Rades D, Witteler J, Schild SE. Radiotherapy of Grade III Gliomas: Identification of Clinical Prognostic Factors for Local Tumor Control and Survival[J]. In Vivo, 2020, 34(6): 3627-3630. DOI: 10.21873/invivo.12208.
[22]
Kumar N, Elangovan A, Madan R, et al. Impact of Immunohistochemical profiling of Glioblastoma multiforme on clinical outcomes: Real-world scenario in resource limited setting[J]. Clin Neurol Neurosurg, 2021, 207: 106726. DOI: 10.1016/j.clineuro.
[23]
Syed M, Liermann J, Verma V, et al. Survival and recurrence patterns of multifocal glioblastoma after radiation therapy[J]. Cancer Manag Res, 2018, 10: 4229-4235. DOI: 10.2147/CMAR.S165956.
[24]
Hartmann M, Jansen O, Egelhof T, et al. Effect of brain edema on the recurrence pattern of malignant gliomas[J]. Radiologe, 1998, 38(11): 948-53. DOI: 10.1007/s001170050447.
[25]
Liu SY, Zhou CF, Lin ZX, et al. The Influence 0f Peritumoral Brain Edema at Newly Diagnosis On Recurrence Patterns after Entire Resection ln Gliomas[J]. Chinese Journal of Neurooncology, 2013, 11(1): 22-29.
[26]
Tu ZW, Xiong HF, Qiu Y, et al. Limited recurrence distance of glioblastoma under modern radiotherapy era[J]. BMC Cancer, 2021, 21(1): 720. DOI: 10.1186/s12885-021-08467-3.
[27]
Furuta T, Nakada M, Ueda F, et al. Prognostic paradox: brain damage around the glioblastoma resection cavity. J Neurooncol[J]. J Neurooncol, 2014, 118(1): 187-92. DOI: 10.1007/s11060-014-1418-1.
[28]
Thiepold AL, Luger S, Wagner M, et al. Perioperative cerebral ischemia promote infiltrative recurrence in glioblastoma[J]. Oncotarget, 2015, 6(16): 14537-14544. DOI: 10.18632/oncotarget.3994.
[29]
Bette S, Barz M, Huber T, et al. Retrospective Analysis of Radiological Recurrence Patterns in Glioblastoma, Their Prognostic Value And Association to Postoperative Infarct Volume[J]. Sci Rep, 2018, 8(1): 4561. DOI: 10.1038/s41598-018-22697-9.
[30]
Curtin L, Hawkins-Daarud A, Porter AB, et al. A Mechanistic Investigation into Ischemia-Driven Distal Recurrence of Glioblastoma[J]. Bull Math Biol, 2020, 82(11): 143. DOI: 10.1007/s11538-020-00814-y.
[31]
Lupa JT, Raizer JJ, Helenowski IB, et al. The Impact of Perioperative Arterial Infarct on Recurrence, Functional Outcomes, and Survival in Glioblastoma Patients[J]. Front Oncol, 2020, 10(10): 706. DOI: 10.3389/fonc.2020.00706.
[32]
Xu M, Yu YQ, Hou WS, et al. Intravoxel incoherent motion DWI in assessment of hypoxic status of tumor microenvironment of C6glioma modle in SD rats[J]. Chin J Med Imaging Technol, 2019, 35(2): 170-174. DOI: 10.13929/j.1003-3289.201806071.
[33]
Chang TJ, Shen HC, Yu MM, et al. The diagnostic value of IVIM in glioma grading and its correlation with Ki-67 labeling index[J]. Chin J Magn Reson Imaging, 2021, 12(2): 19-23. DOI: 10.12015/issn.1674-8034.2021.02.005.
[34]
Binczyk F, Prazuch W, Bozek P, et al. Radiomics and artificial intelligence in lung cancer screening[J]. Transl Lung Cancer Res, 2021, 10(2): 1186-1199. DOI: 10.21037/tlcr-20-708.
[35]
Sartoretti E, Sartoretti T, Wyss M, et al. Amide proton transfer weighted (APTw) imaging based radiomics allows for the differentiation of gliomas from metastases[J]. Sci Rep, 2021, 11(1): 5506. DOI: 10.1038/s41598-021-85168-8.
[36]
Yan JL, Toh CH, Ko L, et al. A Neural Network Approach to Identify Glioblastoma Progression Phenotype from Multimodal MRI[J]. Cancers (Basel), 2021, 13(9) :2006. DOI: 10.3390/cancers13092006.
[37]
Shim KY, Chung SW, Jeong JH, et al. Radiomics-based neural network predicts recurrence patterns in glioblastoma using dynamic susceptibility contrast-enhanced MRI[J]. Sci Rep, 2021, 11(1): 9974. DOI: 10.1038/s41598-021-89218-z.
[38]
Fathi Kazerooni A, Akbari H, Shukla G, et al. Cancer Imaging Phenomics via CaPTk: Multi-Institutional Prediction of Progression-Free Survival and Pattern of Recurrence in Glioblastoma[J]. JCO Clin Cancer Inform, 2020, 4(4): 234-244. DOI: 10.1200/CCI.19.00121.

PREV Dynamic changes of necrotizing pancreatitis: "Transmural pancreatic necrosis-Pancreatic duct disruption-Walled-off necrosis" trilogy
NEXT Research progress of machine learning for predicting breast cancer response to neoadjuvant chemotherapy based on MRI
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn