Share:
Share this content in WeChat
X
Review
Research progress of machine learning for predicting breast cancer response to neoadjuvant chemotherapy based on MRI
CHEN Zhigeng  LI Xiang  SHA Lin 

Cite this article as: Chen ZG, Li X, Sha L. Research progress of machine learning for predicting breast cancer response to neoadjuvant chemotherapy based on MRI[J]. Chin J Magn Reson Imaging, 2021, 12(12): 102-104. DOI:10.12015/issn.1674-8034.2021.12.024.


[Abstract] Neoadjuvant chemotherapy (NAC) is the essential component of breast cancer treatment plan. Breast cancer will show varying degrees of remission after NAC. An accurate method of efficacy prognosis can help in the adjustment of treatment plan and the selection of surgical modality that can benefit patients to the maximum extent. Machine learning (ML) can extract high-throughput information from MR images to reflect tumor heterogeneity and predict tumor response early in NAC or even before therapy. This article reviews the progress of research on ML combined with breast MRI to predict the efficacy of NAC.
[Keywords] machine learning;magnetic resonance imaging;breast cancer;neoadjuvant chemotherapy

CHEN Zhigeng   LI Xiang*   SHA Lin*  

Department of Radiology, the Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China

Li X, E-mail: lixiang_5007@163.com Sha L, E-mail:drshalin@163.com

Conflicts of interest   None.

Received  2021-07-02
Accepted  2021-09-08
DOI: 10.12015/issn.1674-8034.2021.12.024
Cite this article as: Chen ZG, Li X, Sha L. Research progress of machine learning for predicting breast cancer response to neoadjuvant chemotherapy based on MRI[J]. Chin J Magn Reson Imaging, 2021, 12(12): 102-104. DOI:10.12015/issn.1674-8034.2021.12.024.

[1]
Gradishar WJ, Anderson BO, Balassanian R, et al. Breast cancer, version 4.2017, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2018, 16(3): 310-320. DOI: 10.6004/jnccn.2018.0012.
[2]
Shao ZM, Jiang ZF, Li JJ, et al. Consensus of experts on neoadjuvant therapy for breast cancer in China (2019 version)[J]. Chin J Oncol, 2019, 29(5): 390-400. DOI: 10.19401/j.cnki.1007-3639.2019.05.009.
[3]
Matthews CM, Nymberg K, Berger M, et al. Pathological complete response rates with pertuzumab-based neoadjuvant chemotherapy in breast cancer: a single-center experience[J]. J Oncol Pharm Pract, 2020, 26(3): 572-579. DOI: 10.1177/1078155219857800.
[4]
Xiong QQ, Zhou XZ, Liu ZY, et al. Multiparametric MRI-based radiomics analysis for prediction of breast cancers insensitive to neoadjuvant chemotherapy[J]. Clin Transl Oncol, 2020, 22(1): 50-59. DOI: 10.1007/s12094-019-02109-8.
[5]
Zhuang XS, Chen C, Liu ZY, et al. Multiparametric MRI-based radiomics analysis for the prediction of breast tumor regression patterns after neoadjuvant chemotherapy[J]. Transl Oncol, 2020, 13(11): 100831. DOI: 10.1016/j.tranon.2020.100831.
[6]
Ling DC, Sutera PA, Iarrobino NA, et al. Is multifocal regression a risk factor for ipsilateral breast tumor recurrence in the modern era after neoadjuvant chemotherapy and breast conservation therapy?[J]. Int J Radiat Oncol Biol Phys, 2019, 104(4): 869-876. DOI: 10.1016/j.ijrobp.2019.03.012.
[7]
Park AR, Chae EY, Cha JH, et al. Preoperative breast mri in women 35 years of age and younger with breast cancer: benefits in surgical outcomes by using propensity score analysis[J]. Radiology, 2021, 300(1): 39-45. DOI: 10.1148/radiol.2021204124.
[8]
Morrow M, Waters J, Morris E. MRI for breast cancer screening, diagnosis, and treatment[J]. Lancet, 2011, 378(9805): 1804-1811. DOI: 10.1016/S0140-6736(11)61350-0.
[9]
Deo RC. Machine learning in medicine[J]. Circulation, 2015, 132(20): 1920-1930. DOI: 10.1161/CIRCULATIONAHA.115.001593.
[10]
Gao YH, Liu B, Zhu Y, et al. Detection and recognition of ultrasound breast nodules based on semi-supervised deep learning: a powerful alternative strategy[J]. Quant Imaging Med Surg, 2021, 11(6): 2265-2278. DOI: 10.21037/qims-20-12b.
[11]
Ardulov V, Martinez VR, Somandepalli K, et al. Robust diagnostic classification via Q-learning[J]. Sci Rep, 2021, 11(1): 11730. DOI: 10.1038/s41598-021-90000-4.
[12]
Abramson RG, Li X, Hoyt TL, et al. Early assessment of breast cancer response to neoadjuvant chemotherapy by semi-quantitative analysis of high-temporal resolution DCE-MRI: preliminary results[J]. Magn Reson Imaging, 2013, 31(9): 1457-1464. DOI: 10.1016/j.mri.2013.07.002.
[13]
Bitencourt A, Gibbs P, Rossi Saccarelli C, et al. MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after neoadjuvant therapy in HER2 overexpressing breast cancer[J]. EBioMedicine, 2020, 61:103042. DOI: 10.1016/j.ebiom.2020.103042.
[14]
Hou WS, Qian YF, Li XH. Research of dynamic contrast-enhanced MRI in predicting response of breast[J]. Acta Universitatis Medicinalis Anhui, 2020, 55(9): 1446-1451. DOI: 10.19405/j.cnki.issn1000-1492.2020.09.025.
[15]
Braman NM, Etesami M, Prasanna P, et al. Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI[J]. Breast Cancer Res, 2017, 19(1): 57. DOI: 10.1186/s13058-017-0846-1.
[16]
Fan M, Chen H, You C, et al. Radiomics of tumor heterogeneity in longitudinal dynamic contrast-enhanced magnetic resonance imaging for predicting response to neoadjuvant chemotherapy in breast cancer [J]. Front Mol Biosci, 2021, 8: 622219. DOI: 10.3389/fmolb.2021.622219.
[17]
Sutton EJ, Onishi N, Fehr DA, et al. A machine learning model that classifies breast cancer pathologic complete response on MRI post-neoadjuvant chemotherapy[J]. Breast Cancer Res, 2020, 22(6): 1416-1424. DOI: 10.1186/s13058-020-01291-w.
[18]
Chaddad A, Daniel P, Niazi T. Radiomics evaluation of histological heterogeneity using multiscale textures derived from 3D wavelet transformation of multispectral images[J]. Front Oncol, 2018, 8:96. DOI: 10.3389/fonc.2018.00096.
[19]
Zhou JL, Lu JH, Gao C, et al. Predicting the response to neoadjuvant chemotherapy for breast cancer: wavelet transforming radiomics in MRI[J]. BMC Cancer, 2020, 20(1): 100. DOI: 10.1186/s12885-020-6523-2.
[20]
Qiu XQ, Chen Z, Adan S, et al. An improved MR image denoising via low-rank approximation and Laplacian-of-Gaussian edge detector[J]. IET Image Process, 2020, 14(12): 2791-2798. DOI: 10.1049/iet-ipr.2019.1648.
[21]
Choudhery S, Gomez-Cardona D, Favazza CP, et al. MRI radiomics for assessment of molecular subtype, pathological complete response, and residual cancer burden in breast cancer patients treated with neoadjuvant chemotherapy[J]. Acad Radiol, 2020, S1076-6332(20)30607-3. DOI: 10.1016/j.acra.2020.10.020.
[22]
Liu SG, Ren RM, Chen ZQ, et al. Diffusion-weighted imaging in assessing pathological response of tumor in breast cancer subtype to neoadjuvant chemotherapy[J]. J Magn Reson Imaging, 2015, 42(3): 779-787. DOI: 10.1002/jmri.24843.
[23]
Chen XG, Chen XF, Yang JD, et al. Combining dynamic contrast-enhanced magnetic resonance imaging and apparent diffusion coefficient maps for a radiomics nomogram to predict pathological complete response to neoadjuvant chemotherapy in breast cancer patients[J]. J Comput Assist Tomogr, 2020, 44(2): 275-283. DOI: 10.1097/RCT.0000000000000978.
[24]
Bian TT, Wu ZJ, Lin Q, et al. Radiomic signatures derived from multiparametric MRI for the pretreatment prediction of response to neoadjuvant chemotherapy in breast cancer[J]. Br J Radiol, 2020, 93(1115): 20200287. DOI: 10.1259/bjr.20200287.
[25]
Chen SJ, Shu ZY, Li YF, et al. Machine learning-based radiomics nomogram using magnetic resonance images for prediction of neoadjuvant chemotherapy efficacy in breast cancer patients[J]. Front Oncol, 2020, 10: 1410. DOI: 10.3389/fonc.2020.01410.
[26]
Eun NL, Kang D, Son EJ, et al. Texture analysis with 3.0-T MRI for association of response to neoadjuvant chemotherapy in breast cancer[J]. Radiology, 2020, 294(1): 31-41. DOI: 10.1148/radiol.2019182718.
[27]
Duggento A, Conti A, Mauriello A, et al. Deep computational pathology in breast cancer[J]. Semin Cancer Biol, 2021, 72: 226-237. DOI: 10.1016/j.semcancer.2020.08.006.
[28]
Esteva A, Robicquet A, Ramsundar B, et al. A guide to deep learning in healthcare[J]. Nat Med, 2019, 25(1): 24-29. DOI: 10.1038/s41591-018-0316-z.
[29]
Ha R, Chin C, Karcich J, et al. Prior to initiation of chemotherapy, can we predict breast tumor response? Deep learning convolutional neural networks approach using a breast MRI tumor dataset[J]. J Digit Imaging, 2019, 32(5): 693-701. DOI: 10.1007/s10278-018-0144-1.
[30]
El Adoui M, Drisis S, Benjelloun M. Multi-input deep learning architecture for predicting breast tumor response to chemotherapy using quantitative MR images[J]. Int J Comput Assist Radiol Surg, 2020, 15(9): 1491-1500. DOI: 10.1007/s11548-020-02209-9.
[31]
Qu YH, Zhu HT, Cao K, et al. Prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using a deep learning (DL) method[J]. Thorac Cancer, 2020, 11(3): 651-658. DOI: 10.1111/1759-7714.13309.
[32]
Zhang KK, Xu YS, Gao Y, et al. Advances in application of radiomics in colorectal cancer[J]. Chin J Magn Reson Imag, 2021, 12(3): 112-115. DOI: 10.12015/issn.1674-8034.2021.03.028.
[33]
Santucci D, Faiella E, Cordelli E, et al. 3T MRI-radiomic approach to predict for lymph node status in breast cancer patients[J]. Cancers, 2021, 13(9): 2228. DOI: 10.3390/cancers13092228.
[34]
Veeraraghavan H, Dashevsky BZ, Onishi N, et al. Appearance constrained semi-automatic segmentation from DCE-MRI is reproducible and feasible for breast cancer radiomics: a feasibility study[J]. Sci Rep, 2018, 8(1): 4838. DOI: 10.1038/s41598-018-22980-9.
[35]
Doran SJ, Hipwell JH, Denholm R, et al. Breast MRI segmentation for density estimation: do different methods give the same results and how much do differences matter?[J]. Med Phys, 2017, 44(9): 4573-4592. DOI: 10.1002/mp.12320.
[36]
Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563-577. DOI: 10.1148/radiol.2015151169.

PREV Research progress of magnetic resonance imaging in predicting postoperative recurrence patterns of high-grade gliomas
NEXT Progress of radiomics in diagnosis and treatment of hepatocellular carcinoma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn