Share:
Share this content in WeChat
X
Review
Progress of radiomics in diagnosis and treatment of hepatocellular carcinoma
JIANG Qihong  REN Yongjun 

Cite this article as: Jiang QH, Ren YJ. Progress of radiomics in diagnosis and treatment of hepatocellular carcinoma[J]. Chin J Magn Reson Imaging, 2021, 12(12): 105-107, 111. DOI:10.12015/issn.1674-8034.2021.12.025.


[Abstract] The incidence of hepatocellular carcinoma has been high in recent years. Today, with the emphasis on the concept of "precision medicine", accurate information is needed to provide efficient and individualized diagnosis and treatment for patients. Radiomics is of great significance for improving the individualization and precision of medical strategies because it can obtain the information of the overall heterogeneity of tumor noninvasively. This paper mainly discusses the radiomics research progress in diagnosis and treatment of hepatocellular carcinoma, including the diagnosis and differential diagnosis of hepatocellular carcinoma, prediction of gene phenotypes and molecular markers, efficacy monitoring and prognosis prediction , and based on the research achievements of deep learning applications. The demerits of radiomics technology and its future development direction were also summarized at the end of article.
[Keywords] hepatocellular carcinoma;radiomics;computed tomography;magnetic resonance imaging;deep learning;convolutional neural network

JIANG Qihong   REN Yongjun*  

Department of Interventional Radiology, Affiliated Hospital of North Sichuan Medical Colloge, Sichuan Provincial Key Laboratory of Medical Imaging, Nanchong 637000, China

Ren YJ, E-mail: 549351159@qq.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Nanchong City-School Cooperative Scientific Research Special Fund (No. 19SXHZ0252); Scientific Research Development Project of Affiliated Hospital of North Sichuan Medical Colloge (No. 2021ZD015).
Received  2021-06-26
Accepted  2021-09-08
DOI: 10.12015/issn.1674-8034.2021.12.025
Cite this article as: Jiang QH, Ren YJ. Progress of radiomics in diagnosis and treatment of hepatocellular carcinoma[J]. Chin J Magn Reson Imaging, 2021, 12(12): 105-107, 111. DOI:10.12015/issn.1674-8034.2021.12.025.

[1]
Zhou J, Sun HC, Wang Z, et al. Guidelines for the Diagnosis and Treatment of Hepatocellular Carcinoma (2019 Edition)[J]. Liver Cancer, 2020, 9(6): 682-720. DOI: 10.1159/000509424.
[2]
Forner A, Reig M, Bruix J. Hepatocellular carcinoma[J]. Lancet, 2018, 391(10127): 1301-1314. DOI: 10.1016/S0140-6736(18)30010-2.
[3]
Ginsburg GS, Phillips KA. Precision Medicine: From Science To Value[J]. Health Aff (Millwood). 2018, 37(5): 694-701. DOI: 10.1377/hlthaff.2017.1624.
[4]
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
[5]
Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563-577. DOI: 10.1148/radiol.2015151169.
[6]
Chartrand G, Cheng PM, Vorontsov E, et al. Deep Learining: A Primer for Radiologists. Radiographics, 2017, 37(7): 2113-2131. DOI: 10.1148/rg.2017170077.
[7]
Hosny A, Parmar C, Quackenbush J, et al. Artificial intelligence in radiology[J]. Nat Rev Cancer, 2018, 18(8): 500-510. DOI: 10.1038/s41568-018-0016-5.
[8]
Tian DW, Wang XC, Zang H, et al. Progress of artificial intelligence-based pathology in tumor diagnosis and treatment[J]. Chin J Magn Reson Imaging, 2021,12(2): 117-120. DOI: 10.12015/issn.1674-8034.2021.02.029.
[9]
Han YQ, Wei JW, Jiang HY, et al. Research progress and clinical application of radiomics inhepatocellular carcinoma (in Chinese)[J]. Sci Sin Vitae, 2020, 50(11): 1309-1320. DOI: 10.1360/SSV-2019-0230.
[10]
Wu JJ, Liu AL, Cui JJ, et al. Radiomics-based classification of hepatocellular carcinoma and hepatic haemangioma on precontrast magnetic resonance images[J]. BMC Med Imaging, 2019,19(1): 23. DOI: 10.1186/s12880-019-0321-9.
[11]
Nie P, Wang N, Pang J, et al. CT-Based Radiomics Nomogram: A Potential Tool for Differentiating Hepatocellular Adenoma From Hepatocellular Carcinoma in the Noncirrhotic Liver[J]. Acad Radiol, 2021, 28(6): 799-807. DOI: 10.1016/j.acra.2020.04.027.
[12]
Peng YT, Lin P, Wu LY, et al. Ultrasound-Based Radiomics Analysis for Preoperatively Predicting Different Histopathological Subtypes of Primary Liver Cancer[J]. Front Oncol, 2020, 10: 1646. DOI: 10.3389/fonc.2020.01646.
[13]
Mao B, Ma JD, Duan SB, et al. Preoperative classification of primary and metastatic liver cancer via machine learning-based ultrasound radiomics[J]. Eur Radiol, 2021, 31(7): 4576-4586. DOI: 10.1007/s00330-020-07562-6.
[14]
Wu MH, Tan HN, Gao F, et al. Predicting the grade of hepatocellular carcinoma based on non-contrast-enhanced MRI radiomics signature[J]. Eur Radiol, 2019, 29(6): 2802-2811. DOI: 10.1007/s00330-018-5787-2.
[15]
Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach[J]. Nat Commun, 2014, 5: 4006. DOI: 10.1038/ncomms5006.
[16]
Segal E, Sirlin CB, Ooi C, et al. Decoding global gene expression programs in liver cancer by noninvasive imaging[J]. Nat Biotechnol, 2007, 25(6): 675-680. DOI: 10.1038/nbt1306.
[17]
Kuo MD, Gollub J, Sirlin CB, et al. Radiogenomic analysis to identify imaging phenotypes associated with drug response gene expression programs in hepatocellular carcinoma[J]. J Vasc Interv Radiol, 2007, 18(7): 821-831. DOI: 10.1016/j.jvir.2007.04.031.
[18]
Yan YC, Zhou QL, Zhang MY, et al. Integrated Nomograms for Preoperative Prediction of Microvascular Invasion and Lymph Node Metastasis Risk in Hepatocellular Carcinoma Patients[J]. Ann Surg Oncol, 2020, 27(5): 1361-1371. DOI: 10.1245/s10434-019-08071-7.
[19]
Zhang Y, Shu ZY, Ye Q, et al. Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma via Multi-Parametric MRI Radiomics[J]. Front Oncol, 2021, 11: 633596. DOI: 10.3389/fonc.2021.633596.
[20]
Banerjee S, Wang DS, Kim HJ, et al. A computed tomography radiogenomic biomarker predicts microvascular invasion and clinical outcomes in hepatocellular carcinoma[J]. Hepatology, 2015, 62(3): 792-800. DOI: 10.1002/hep.27877.
[21]
Mazurowski MA. Radiogenomics: what it is and why it is important[J]. J Am Coll Radiol, 2015, 12(8): 862-866. DOI: 10.1016/j.jacr.2015.04.019.
[22]
Cao Y, Ke RS, Wang SH, et al. DNA topoisomerase IIα and Ki67 are prognostic factors in patients with hepatocellular carcinoma[J]. Oncol Lett, 2017,13(6): 4109-4116. DOI: 10.3892/ol.2017.5999.
[23]
Bai K, Cao Y, Huang QJ, et al. Prognostic Value of Ki67 Expression for Patients with Surgically Resected Hepatocellular Carcinoma: Perspectives from a High Incidence Area[J]. Clin Lab, 2017, 63(2): 355-364. DOI: 10.7754/Clin.Lab.2016.160638.
[24]
Wu HZ, Han XR, Wang ZH, et al. Prediction of the Ki-67 marker index in hepatocellular carcinoma based on CT radiomics features[J]. Phys Med Biol, 2020, 65(23): 235048. DOI: 10.1088/1361-6560/abac9c.
[25]
Li Y, Yan C, Weng S, et al. Texture analysis of multi-phase MRI images to detect expression of Ki67 in hepatocellular carcinoma[J]. Clin Radiol, 2019, 74(10): 813.e19-813.e27. DOI: 10.1016/j.crad.2019.06.024.
[26]
Kawai T, asuchika K Y, Ishii T, et al. Keratin 19, a Cancer Stem Cell Marker in Human Hepatocellular Carcinoma[J]. Clin Cancer Res, 2015, 21(13): 3081-3091. DOI: 10.1158/1078-0432.CCR-14-1936.
[27]
Wang WT, Gu DS, Wei JW, et al. A radiomics-based biomarker for cytokeratin 19 status of hepatocellular carcinoma with gadoxetic acid-enhanced MRI[J]. Eur Radiol, 2020, 30(5): 3004-3014. DOI: 10.1007/s00330-019-06585-y.
[28]
Zhao Y, Wang N, Wu JJ, et al. Radiomics Analysis Based on Contrast-Enhanced MRI for Prediction of Therapeutic Response to Transarterial Chemoembolization in Hepatocellular Carcinoma[J]. Front Oncol, 2021, 11: 582788. DOI: 10.3389/fonc.2021.582788.
[29]
Yuan GS, Song YD, Li Q, et al. Development and Validation of a Contrast-Enhanced CT-Based Radiomics Nomogram for Prediction of Therapeutic Efficacy of Anti-PD-1 Antibodies in Advanced HCC Patients[J]. Front Immunol, 2021, 11: 613946. DOI: 10.3389/fimmu.2020.613946.
[30]
Wang XH, Long LH, Cui Y, et al. MRI-based radiomics model for preoperative prediction of 5-year survival in patients with hepatocellular carcinoma[J]. Br J Cancer, 2020, 122(7): 978-985. DOI: 10.1038/s41416-019-0706-0.
[31]
Song WL, Yu XL, Guo DJ, et al. MRI-Based Radiomics: Associations With the Recurrence-Free Survival of Patients With Hepatocellular Carcinoma Treated With Conventional Transcatheter Arterial Chemoembolization[J]. J Magn Reson Imaging, 2020, 52(2): 461-473. DOI: 10.1002/jmri.26977.
[32]
Liu YP, Liu GP, Wang RF, et al. Accurate segmentation method of liver tumor CT based on the combination of deep learning and radiomics[J]. Journal of Image and Graphics, 2020, 25(10): 2128-2141. DOI: 10.11834/jig.200198.
[33]
Zhen SH, Cheng M, Tao YB, et al. Deep Learning for Accurate Diagnosis of Liver Tumor Based on Magnetic Resonance Imaging and Clinical Data[J]. Front Oncol. 2020, 10: 680. DOI: 10.3389/fonc.2020.00680.
[34]
Trivizakis E, Manikis GC, Nikiforaki K, et al. Extending 2-D Convolutional Neural Networks to 3-D for Advancing Deep Learning Cancer Classification With Application to MRI Liver Tumor Differentiation[J]. IEEE J Biomed Health Inform, 2019, 23(3): 923-930. DOI: 10.1109/JBHI.2018.2886276.
[35]
Ibragimov B, Toesca DAS, Chang DT, et al. Deep learning for identification of critical regions associated with toxicities after liver stereotactic body radiation therapy[J]. Med Phys, 2020, 47(8): 3721-3731. DOI: 10.1002/mp.14235.
[36]
Zhang SY, Wu S, Shang SQ, et al. Detection and Monitoring of Thermal Lesions Induced by Microwave Ablation Using Ultrasound Imaging and Convolutional Neural Networks[J]. IEEE J Biomed Health Inform, 2020, 24(4): 965-973. DOI: 10.1109/JBHI.2019.2939810.
[37]
Coudray N, Ocampo PS, Sakellaropoulos T, et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning[J]. Nat Med, 2018, 24(10): 1559-1567. DOI: 10.1038/s41591-018-0177-5.
[38]
Chen MY, Zhang B, Topatana W, et al. Classification and mutation prediction based on histopathology H&E images in liver cancer using deep learning[J]. NPJ Precis Oncol, 2020, 4: 14. DOI: 10.1038/s41698-020-0120-3.

PREV Research progress of machine learning for predicting breast cancer response to neoadjuvant chemotherapy based on MRI
NEXT Application progress of intravoxel incoherent motion imaging in clinical diagnosis and treatment of rectal cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn