Share:
Share this content in WeChat
X
Review
Application progress of intravoxel incoherent motion imaging in clinical diagnosis and treatment of rectal cancer
ZHAO Jia  LI Huabing 

Cite this article as: Zhao J, Li HB. Application progress of intravoxel incoherent motion imaging in clinical diagnosis and treatment of rectal cancer[J]. Chin J Magn Reson Imaging, 2021, 12(12): 108-111. DOI:10.12015/issn.1674-8034.2021.12.026.


[Abstract] Imaging evaluation of rectal cancer mainly focuses on diagnosis, preoperative staging and prediction of treatment response. Accurate preoperative staging and prediction of therapeutic response after neoadjuvant chemoradiotherapy (NCRT) can provide a basis for clinical selection of appropriate treatment . Intravoxel incoherent motion (IVIM) is a new technology derived from diffusion weighted imaging (DWI). It applies multi-b value scanning without intravenous injection of gadolinium contrast agent. It can quantify the perfusion and diffusion information in tissues and cover more comprehensive informations than DWI. It is useful in the diagnosis and treatment of rectal cancer. It has certain value in the diagnosis, staging and curative effect evaluation. This paper mainly reviews the application status and development trend of IVIM in rectal cancer.
[Keywords] magnetic resonance imaging;rectal cancer;intravoxel incoherent motion;diffusion weighted imaging;multi-b value

ZHAO Jia1   LI Huabing2*  

1 Shanxi Medical University, Taiyuan 030001, China

2 Department of MRI, Shanxi Jincheng General Hospital, Shanxi Medical University, Jincheng 048006, China

Li HB, E-mail: lihuabing3668960@163.com

Conflicts of interest   None.

Received  2021-07-14
Accepted  2021-10-09
DOI: 10.12015/issn.1674-8034.2021.12.026
Cite this article as: Zhao J, Li HB. Application progress of intravoxel incoherent motion imaging in clinical diagnosis and treatment of rectal cancer[J]. Chin J Magn Reson Imaging, 2021, 12(12): 108-111. DOI:10.12015/issn.1674-8034.2021.12.026.

[1]
Deng YH. Rectal Cancer in Asian vs. Western Countries: Why the Variation in Incidence?[J] Curr Treat Options Oncol, 2017, 18(10): 64. DOI: 10.1007/s11864-017-0500-2.
[2]
Le Bihan D, Breton E, Lallemand D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders[J]. Radiology, 1986, 161(2): 401-407. DOI: 10.1148/radiology.161.2.3763909.
[3]
Iima M, Le Bihan D. Clinical Intravoxel Incoherent Motion and Diffusion MR Imaging: Past, Present, and Future[J]. Radiology, 2016, 278(1): 13-32. DOI: 10.1148/radiol.2015150244.
[4]
Ren JP, Meng N, Jin XX, et al. Diagnostic value of multimodal intravoxel incoherent motion in rectal cancer[J]. Chin Imaging J Integrated Tradi West Med, 2019, 17(3): 248-251. DOI: 10.3969/j.issn.1672-0512.2019.03.009.
[5]
Zhao XM. Application Value of MRI Intravoxal Incoherent Motion-Diffusion Weighted Imaging in Preoperatively Diagnosing Rectal Cancer[J]. Chin J Coloproctol, 2019, 39(5): 1-3.
[6]
Lu BL, Yang XY, Xiao XJ, et al. Intravoxel Incoherent Motion Diffusion-Weighted Imaging of Primary Rectal Carcinoma: Correlation with Histopathology[J]. Med Sci Monit, 2018, 24: 2429-2436. DOI: 10.12659/msm.908574.
[7]
Qiu L, Cai XR, Liu SR, et al. 3.0T MR intravoxel incoherent motion diffusion weighed imaging in preoperative diagnosis of rectal carcinoma[J]. Chin J Med Imaging Technol. 2015, 31(9): 1349-1353. DOI: 10.13929/j.1003-3289.2015.09.016.
[8]
Zhou JJ, Song GS, Li AY, et al. Application of intravoxel incoherent motion imaging in the differential diagnosis of rectal adenoma and adenocarcinoma[J]. Radiol Practice, 2019, 34(3): 298-301. DOI: 10.13609/j.cnki.1000-0313.2019.03.011.
[9]
Wang LH, Li YG. Application of intravoxel incoherent motion imaging of 3.0 T magnetic resonance imaging on the identification rectal tubulovillous adenoma and rectal cancer[J]. Chin J Magn Reson Imaging, 2017, 8(12): 912-916. DOI: 10.12015/issn.1674-8034.2017.12.007.
[10]
Bokacheva L, Kaplan JB, Giri DD, et al. Intravoxel incoherent motion diffusion-weighted MRI at 3.0 T differentiates malignant breast lesions from benign lesions and breast parenchyma[J]. J Magn Reson Imaging, 2014, 40(4): 813-23. DOI: 10.1002/jmri.24462.
[11]
Siegel RL, Miller KD, Goding Sauer A, et al. Colorectal cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(3): 145-164. DOI: 10.3322/caac.21601.
[12]
Surov A, Meyer HJ, Höhn AK, et al. Correlations between intravoxel incoherent motion (IVIM) parameters and histological findings in rectal cancer: preliminary results[J]. Oncotarget, 2017, 8(13): 21974-21983. DOI: 10.18632/oncotarget.15753.
[13]
Wang ZJ, Zhang ZW. Preoperative Guiding Value of 3.0T MRI Intravoxel Incoherent Motion Diffusion Weighted Imaging Parameters in Rectal Cancer Patients[J]. Chin J CT & MRI, 2018, 16(3): 103-106. DOI: 10.3969/j.issn.1672-5131.2018.03.033.
[14]
Li AY. The preliminary research of IVIM got from different rectal states and ROI selection methods in the disgnosis of preoperative stage of rectal cancers[D]. Shandong Univ, 2017.
[15]
Yan CC,Chen G,He J,et al. Correlation between MR imaging parameters of incoherent motion in voxels and TNM staging of rectal cancer[J]. Acta Universitatis Medicinalis Nanjing (Natural Science). 2016, 36(6): 753-756. DOI: 10.7655/NYDXBNS20160623.
[16]
Wang PP, Wang CB, Wu YY, et al. Value of intravoxel incoherent motion diffusion -weighted imaging in distinguishing poorly and moderately differentiated rectal adenocarcinomas[J]. Diagn Imaging & Inter Radiol, 2019, 28(3): 175-180. DOI: 10.3969/j.issn.1005-8001.2019.03.003.
[17]
Geng ZJ, Zhang YF, Yin SH, et al. Preoperatively Grading Rectal Cancer with the Combination of Intravoxel Incoherent Motions Imaging and Diffusion Kurtosis Imaging[J]. Contrast Media Mol Imaging, 2020, 2020: 2164509. DOI: 10.1155/2020/2164509.
[18]
Duan SF, Feng F. Application Value of Magnetic Resonance IVIM Imaging in Predicting TN Stage, Differentiation and Vascular Invasion of Rectal Cancer[J]. Imaging Science and Photochemistry, 2020, 38(6): 1088-1093. DOI: 10.7517/issn.1674-0475.200604.
[19]
Yang XY, Xiao XJ, Lu BL, et al. Perfusion-sensitive parameters of intravoxel incoherent motion MRI in rectal cancer: evaluation of reproducibility and correlation with dynamic contrast-enhanced MRI[J]. Acta Radiol, 2019, 60(5): 569-577. DOI: 10.1177/0284185118791201.
[20]
Qiu L, Liu XL, Liu SR, et al. Role of quantitative intravoxel incoherent motion parameters in the preoperative diagnosis of nodal metastasis in patients with rectal carcinoma[J]. J Magn Reson Imaging, 2016, 44(4): 1031-9. DOI: 10.1002/jmri.25250.
[21]
Yu XP, Wen L, Hou J, et al. Discrimination between Metastatic and Nonmetastatic Mesorectal Lymph Nodes in Rectal Cancer Using Intravoxel Incoherent Motion Diffusion-weighted Magnetic Resonance Imaging[J]. Acad Radiol, 2016, 23(4): 479-85. DOI: 10.1016/j.acra.2015.12.013.
[22]
Xu MH, Yin JY, Shen W, et al. Diagnostic value of diffusion-weighted imaging based on monoexponential and biexponential model in the diagnosis of metastatic lymphnode in rectal cancer[J]. Radiol Practice, 2020, 35(8): 1042-1047. DOI: 10.13609/j.cnki.1000-0313.2020.08.017.
[23]
Long L, Zhang HP, He XJ, et al. Value of intravoxel incoherent motion magnetic resonance imaging for differentiating metastatic from nonmetastatic mesorectal lymph nodes with different short-axis diameters in rectal cancer[J]. J Cancer Res Ther, 2019, 15(7): 1508-1515. DOI: 10.4103/jcrt.JCRT_76_19.
[24]
Yang XY, Chen Y, Wen ZQ, et al. Non-invasive MR assessment of the microstructure and microcirculation in regional lymph nodes for rectal cancer: a study of intravoxel incoherent motion imaging[J]. Cancer Imaging, 2019, 19(1): 70. DOI: 10.1186/s40644-019-0255-z.
[25]
Zhao ZW, Dong ZF. Study on the diagnostic efficacy of intravoxel incoherent motion parameters within voxels in stage of rectal cancer before operation[J]. Oncoradiology, 2021, 30(1): 16-22. DOI: 10.19732/j.cnki.2096-6210.2021.01.003.
[26]
Bassaneze T, Gonçalves JE, Faria JF, et al. Quantitative Aspects of Diffusion-weighted Magnetic Resonance Imaging in Rectal Cancer Response to Neoadjuvant Therapy[J]. Radiol Oncol, 2017, 51(3): 270-276. DOI: 10.1515/raon-2017-0025.
[27]
Nougaret S, Vargas HA, Lakhman Y, et al. Intravoxel Incoherent Motion-derived Histogram Metrics for Assessment of Response after Combined Chemotherapy and Radiation Therapy in Rectal Cancer: Initial Experience and Comparison between Single-Section and Volumetric Analyses[J]. Radiology, 2016, 280(2): 446-454. DOI: 10.1148/radiol.2016150702.
[28]
Wen L, Hou J, Zhou JM, et al. Intravoxel incoherent motion diffusion-weighted imaging for discriminating the pathological response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer[J]. Sci Rep, 2017, 7(1): 8496. DOI: 10.1038/s41598-017-09227-9.
[29]
Xu QY, Xu YY, Sun HL, et al. Quantitative intravoxel incoherent motion parameters derived from whole-tumor volume for assessing pathological complete response to neoadjuvant chemotherapy in locally advanced rectal cancer[J]. J Magn Reson Imaging, 2018, 48(1): 248-258. DOI: 10.1002/jmri.25931.
[30]
Hu HB, Jiang HJ, Wang S, et al. 3.0 T MRI IVIM-DWI for predicting the efficacy of neoadjuvant chemoradiation for locally advanced rectal cancer[J]. Abdom Radiol (NY), 2021, 46(1): 134-143. DOI: 10.1007/s00261-020-02594-4.
[31]
Liang CY, Chen MD, Zhao XX, et al. Multiple mathematical models of diffusion-weighted magnetic resonance imaging combined with prognostic factors for assessing the response to neoadjuvant chemotherapy and radiation therapy in locally advanced rectal cancer[J]. Eur J Radiol, 2019, 110: 249-255. DOI: 10.1016/j.ejrad.2018.12.005.
[32]
Bakke KM, Hole KH, Dueland S, et al. Diffusion-weighted magnetic resonance imaging of rectal cancer: tumour volume and perfusion fraction predict chemoradiotherapy response and survival[J]. Acta Oncol, 2017, 56(6): 813-818. DOI: 10.1080/0284186X.2017.1287951.
[33]
Raju J, UA C, John A. A novel approach for b-value optimization in Intravoxel Incoherent Motion Imaging using Metaheuristic algorithm[J]. Expert Systems with Applications, 2021, 168: 114270. DOI: 10.1016/j.eswa.2020.114270.
[34]
Bäuerle T, Seyler L, Münter M, et al. Diffusion-weighted imaging in rectal carcinoma patients without and after chemoradiotherapy: a comparative study with histology[J]. Eur J Radiol, 2013, 82(3): 444-452. DOI: 10.1016/j.ejrad.2012.10.012.
[35]
Lemke A, Stieltjes B, Schad LR, et al. Toward an optimal distribution of b values for intravoxel incoherent motion imaging[J]. Magn Reson Imaging, 2011, 29(6): 766-776. DOI: 10.1016/j.mri.2011.03.004.
[36]
Szubert-Franczak AE, Naduk-Ostrowska M, Pasicz K, et al. Intravoxel incoherent motion magnetic resonance imaging: basic principles and clinical applications[J]. Pol J Radiol, 2020, 85: e624-e635. DOI: 10.5114/pjr.2020.101476.
[37]
Kim JH, Joo I, Kim TY, et al. Diffusion-Related MRI Parameters for Assessing Early Treatment Response of Liver Metastases to Cytotoxic Therapy in Colorectal Cancer[J]. AJR Am J Roentgenol, 2016, 207(3): 26-32. DOI: 10.2214/ajr.15.15683.
[38]
Fujima N, Yoshida D, Sakashita T, et al. Prediction of the treatment outcome using intravoxel incoherent motion and diffusional kurtosis imaging in nasal or sinonasal squamous cell carcinoma patients[J]. Eur Radiol, 2017, 27(3): 956-965. DOI: 10.1007/s00330-016-4440-1.
[39]
Meng YK, Zhang CD, Zhang HM, et al. Optimization of High B Values for Intravoxel Incoherent Motion Imaging of Rectal Cancer: A Pilot Study[J]. J Clin Radiol, 2017, 36(6): 822-826. DOI: 10.13437/j.cnki.jcr.2017.06.017.
[40]
Lu ZH, Jiang H, Weng XY, et al. Optimal selection of high and ultra-high b value for diffusion weighted imaging in rectal cancer[J]. Chin J Med Imaging Technol, 2020, 36(12): 1858-1862. DOI: 10.13929/j.issn.1003-3289.2020.12.021.
[41]
Chen LG, Shen F, Li ZH, et al. Diffusion-weighted imaging of rectal cancer on repeatability and cancer characterization: an effect of b-value distribution study[J]. Cancer Imaging, 2018, 18(1): 43. DOI: 10.1186/s40644-018-0177-1.
[42]
Cha SY, Kim E, Park SY. Why Is a b-value Range of 1500-2000 s/mm² Optimal for Evaluating Prostatic Index Lesions on Synthetic Diffusion-Weighted Imaging?[J] Korean J Radiol, 2021, 22(6): 922-930. DOI: 10.3348/kjr.2020.0836.

PREV Progress of radiomics in diagnosis and treatment of hepatocellular carcinoma
NEXT Research progress of magnetic resonance elastography in the quantitative diagnosis and staging of liver fibrosis
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn