Share:
Share this content in WeChat
X
Original Article
A preliminary study of cerebral blood flow perfusion based on the ASL in patients with tension type headache in the resting states
ZHANG Chengcheng  WANG Jili  WANG Yaqi  ZHANG Shuxian  XU Qinyan  SUN Tong  WANG Xizhen  SUN Xihe 

Cite this article as: Zhang CC, Wang JL, Wang YQ, et al. A preliminary study of cerebral blood flow perfusion based on the ASL in patients with tension type headache in the resting states[J]. Chin J Magn Reson Imaging, 2022, 13(1): 76-80. DOI:10.12015/issn.1674-8034.2022.01.015.


[Abstract] Objective To investigate the alteration patterns of cerebral blood flow (CBF) based on arterial spin labeling (ASL) and its correlation with the degree of pain in patients with tension type headache in the resting states.Materials and Methods: Thirty-one cases of tension-type headache patients and 33 cases of matched healthy control volunteers were collected from May 2018 to July 2019 in Affiliated Hospital of Weifang Medical University. A three-dimensional pseudo-continuous arterial spin labeling (3D-pCASL) imaging was performed to measure CBF in the resting-states. The difference of CBF between tension headache group and healthy control group was analyzed, visual analogue scale (VAS) was used to evaluate the degree of pain in TTH group, and the correlation between the brain region with altered CBF values and pain degree was evaluated in tension headache patients.Results Compared with the healthy control group, the CBF values of bilateral parahippocampal gyrus, left thalamus, left putamen, right hippocampus, left caudate nucleus, left insular lobe in TTH group increased, while the CBF values of right central posterior gyrus, right inferior frontal gyrus of insular tectum and left middle frontal gyrus decreased (P<0.05, family-wise error, FWE correction). In addition, the CBF values of left lenticular putamen, left caudate nucleus and right hippocampus were positively correlated with VAS scores (r=0.374, r=0.416, r=0.358, P<0.05), while the CBF values of right inferior frontal gyrus were negatively correlated with VAS scores (r=-0.444, P<0.05).Conclusion Tension-type headache patients had multiple brain regions with altered CBF value, which may be involved in the central pathophysiological mechanism of tension type headache.
[Keywords] tension-type headache;cerebral blood flow;arterial spin labeling;perfusion imaging;magnetic resonance imaging;the degree of pain;correlation analysis

ZHANG Chengcheng1   WANG Jili1   WANG Yaqi3   ZHANG Shuxian2*   XU Qinyan2   SUN Tong1   WANG Xizhen1   SUN Xihe1*  

1 School of Medical Imaging, Weifang Medical University, Weifang 261031, China

2 Affiliated Hospital of Weifang Medical University, Weifang 261031, China

3 Department of Medical Imaging of Weifang Hospital of Traditional Chinese Medicine, Weifang 261031, China

Zhang SX, E-mail: zhangshuxian366@126.com Sun XH, E-mail: sunxihe8130@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Natural Science Foundation of Shandong Province (No. ZR2017MH110).
Received  2021-07-19
Accepted  2021-11-09
DOI: 10.12015/issn.1674-8034.2022.01.015
Cite this article as: Zhang CC, Wang JL, Wang YQ, et al. A preliminary study of cerebral blood flow perfusion based on the ASL in patients with tension type headache in the resting states[J]. Chin J Magn Reson Imaging, 2022, 13(1): 76-80. DOI:10.12015/issn.1674-8034.2022.01.015.

[1]
Wang YQ, Zhang SX, Xu QY, et al. Study of gray matter volume changes in tension headache and correlation with pain degree[J]. J Clin Radiol, 2020, 39(11): 2161-2165. DOI: 10.13437/j.cnki.jcr.2020.11.006.
[2]
GBD 2016 Headache Collaborators. Global, regional, and national burden of migraine and tension-type headache, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet Neurol, 2018, 17(11): 954‐976. DOI: 10.1016/S1474-4422(18)30322-3.
[3]
Kong XY, Chen JJ, Jiang HH, et al. Clinical characteristics, effect of treatments and clinical test of diagnostic criteria in ICHD-3β for tension-type headache[J]. Chinese Journal of Pain Medicine, 2018, 24(9): 666-670. DOI: 10.3969/j.issn.1006-9852.2018.09.006.
[4]
Alisch JSR, Khattar N, Kim RW, et al. Sex and age-related differences in cerebral blood flow investigated using pseudo-continuous arterial spin labeling magnetic resonance imaging[J]. Aging (Albany NY), 2021, 13(4): 4911-4925. DOI: 10.18632/aging.202673.
[5]
Headache Classification Committee of the International Headache Society (IHS). The International Classification of Headache Disorders, 3rd edition (beta version)[J].Cephalalgia, 2013, 33(9): 629‐808. DOI: 10.1177/0333102413485658.
[6]
Miao PF, Wang CH, Wei Y, et al. 3D-ASL assessment of cerebral blood flow changes in chronic stroke patients[J].Chin J Magn Reson Imaging, 2021, 12(2): 1-5. DOI: 10.12015/issn.1674-8034.2021.02.001.
[7]
Camargo A, Wang Z, Alzheimer's Disease Neuroimaging Initiative. Longitudinal Cerebral Blood Flow Changes in Normal Aging and the Alzheimer's Disease Continuum Identified by Arterial Spin Labeling MRI[J]. J Alzheimers Dis, 2021, 81(4): 1727-1735. DOI: 10.3233/JAD-210116.
[8]
Yang FC, Chou KH, Fuh JL, et al. Altered gray matter volume in the frontal pain modulation network in patients with cluster headache[J]. Pain, 2013, 154(6): 801-807. DOI: 10.1016/j.pain.2013.02.005.
[9]
Ong WY, Stohler CS, Herr DR. Role of the Prefrontal Cortex in Pain Processing[J]. Mol Neurobiol, 2019, 56(2): 1137-1166. DOI: 10.1007/s12035-018-1130-9.
[10]
Wang P, Du H, Chen N, et al. Regional homogeneity abnormalities in patients with tension-type headache: a resting-state fMRI study[J]. Neurosci Bull, 2014, 30(6): 949‐955. DOI: 10.1007/s12264-013-1468-6.
[11]
Absinta M, Rocca MA, Colombo B, et al. Selective decreased grey matter volume of the pain-matrix network in cluster headache[J]. Cephalalgia, 2012, 32(2): 109-115. DOI: 10.1177/0333102411431334.
[12]
Chen WT, Chou KH, Lee PL, et al. Comparison of gray matter volume between migraine and "strict-criteria" tension-type headache[J]. Headache Pain, 2018, 19(1): 1-4. DOI: 10.1186/s10194-018-0834-6.
[13]
Ugawa Y. Sensory input and basal ganglia[J]. Rinsho Shinkeigaku, 2012, 52(11): 862-865. DOI: 10.5692/clinicalneurol.52.862.
[14]
Neugebauer V, Mazzitelli M, Cragg B, et al. Amygdala, neuropeptides, and chronic pain-related affective behaviors[J]. Neuropharmacology, 2020, 170. DOI: 10.1016/j.neuropharm.2020.108052.
[15]
Yin RJ. Resting state fMRI study of brain in patients with postherpetic neuralgia[D]. Kunming Medical University, 2017.
[16]
Xu YK, Pan JL, Li B, et al. Alteration of Functional Connectivity in Patients Suffering From Chronic Neck and Shoulder Pain Caused by Cervical Spondylotic Radiculopathy: A Resting-state fMRI Study[J]. J Clin Radiol, 2018, 37(7): 1082-1086. DOI: 10.13437/j.cnki.jcr.2018.07.004.
[17]
Chen WT, Chou KH, Lee PL, et al. Comparison of gray matter volume between migraine and "strict-criteria" tension-type headache[J]. Headache Pain, 2018, 19(1): 4. DOI: 10.1186/s10194-018-0834-6.
[18]
Uddin LQ, Nomi JS, Hébert-Seropian B, et al. Structure and Function of the Human Insula[J]. Clin Neurophysiol, 2017, 34(4): 300-306. DOI: 10.1097/WNP.0000000000000377.
[19]
Wu Y, Wang LJ, Yu LN, et al. Research progress of functional magnetic resonance imaging in patients with postherpetic neuralgia[J]. Chinese Journal of Pain Medicine, 2017, 23(5): 371-375. DOI: 10.3969/j.issn.1006-9852.2017.05.011.
[20]
Magon S, May A, Stankewitz A, et al. Cortical abnormalities in episodic migraine: A multi-center 3T MRI study[J]. Cephalalgia, 2019, 39(5): 665-673. DOI: 10.1177/0333102418795163.
[21]
Maleki N, Becerra L, Brawn J, et al. Concurrent functional and structural cortical alterations in migraine[J]. Cephalalgia, 2012, 32(8): 607-620. DOI: 10.1177/0333102412445622.
[22]
Liu J, Hao Y, Du M, et al. Quantitative cerebral blood flow mapping and functional connectivity of postherpetic neuralgia pain: a perfusion fMRI study[J]. Pain, 2013, 154(1): 110-118. DOI: 10.1016/j.pain.2012.09.016.
[23]
Chen DJ, Yang HL, Wang ZG, et al. Functional connectivity of persistent somatoform pain disorder in thalamus: A functional magnetic resonance imaging study[J]. Chin J Magn Reson Imaging, 2018, 9(8): 561-564. DOI: 10.12015/issn.1674-8034.2018.08.001.
[24]
Wey HY, Catana C, Hooker JM, et al. Simultaneous fMRI-PET of the opioidergic pain system in human brain[J]. Neuroimage, 2014, 102Pt 2(2): 275-282. DOI: 10.1016/j.neuroimage.2014.07.058.
[25]
Jiang CC, Li YG. Progress of brain functional magnetic resonance imaging in pain[J]. Chin J Magn Reson Imaging, 2015, 6(11): 876-880. DOI: 10.3969/j.issn.1674-8034.2015.11.015.

PREV Instant brain effect of transcutaneous auricular vagus nerve stimulation in treating the treatment-resistant depression by resting rtate functional magnetic resonance imaging
NEXT A pilot study of resting-state brain function in naive patients with primary hypothyroidism
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn