Share:
Share this content in WeChat
X
Original Article
The correlation between brain gray matter volume changes and executive function in patients with end-stage renal disease
FANG Jie  WANG Haibao  QI Xiangming  SI Li  LI Zhihao  LIU Yarui  ZOU Fan 

Cite this article as: Fang J, Wang HB, Qi XM, et al. The correlation between brain gray matter volume changes and executive function in patients with end-stage renal disease[J]. Chin J Magn Reson Imaging, 2022, 13(1): 86-90. DOI:10.12015/issn.1674-8034.2022.01.017.


[Abstract] Objective To investigate the brain gray matter volume changes and its relationship with executive function in patients with end stage renal disease (ESRD) by using voxel-based morphometry (VBM). Materials andMethods Forty-one patients with ESRD (ESRD group) and 41 gender-, age- and education- matched healthy volunteers (normal control group) were performed by 3D-T1WI MRI scans and executive function tests. To calculate the brain gray matter volume of two groups with VBM, the two-sample independent t-test was performed to test the differences of brain gray matter volume between the two groups. Pearson correlation analysis was performed between different brain gray matter volume and executive function test scores in the ESRD group.Results Compared with normal control group, brain regions of the significantly decreased gray matter volume in ESRD group included anterior cingulate gyrus, bilateral middle cingulate gyrus, bilateral insula, left middle frontal gyrus, left transverse temporal gyrus, left hippocampus and left caudate (P<0.05, FWE corrected). The gray matter volume in anterior cingulate gyrus, left middle cingulate gyrus and left insula were negatively correlated with trail making test A (TMT-A) score (P<0.05), the gray matter volume in anterior cingulate gyrus, bilateral insula, left middle frontal gyrus, left transverse temporal gyrus and left hippocampus were positively correlated with digit symbol substitution test(DSST) score (P<0.05).Conclusion There are abnormal gray matter structures in ESRD patients, and the gray matter atrophy in cingulate gyrus, prefrontal lobe and temporal lobe were associated with the degree of executive dysfunction.
[Keywords] end stage renal disease;voxel-based morphometry;executive dysfunction;magnetic resonance imaging;brain structure

FANG Jie1   WANG Haibao1*   QI Xiangming2   SI Li2   LI Zhihao1   LIU Yarui1   ZOU Fan1  

1 Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China

2 Department of Nephrology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China

Wang HB, E-mail: wanghaibao916@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Natural Science Foundation of Anhui Province (No. 1908085MH245); Natural Science Research Project of Anhui Universities (No. KJ2018A0493).
Received  2021-07-24
Accepted  2021-11-09
DOI: 10.12015/issn.1674-8034.2022.01.017
Cite this article as: Fang J, Wang HB, Qi XM, et al. The correlation between brain gray matter volume changes and executive function in patients with end-stage renal disease[J]. Chin J Magn Reson Imaging, 2022, 13(1): 86-90. DOI:10.12015/issn.1674-8034.2022.01.017.

[1]
Puy L, Bugnicourt JM, Liabeuf S, et al. Cognitive Impairments and Dysexecutive Behavioral Disorders in Chronic Kidney Disease[J]. J Neuropsychiatry Clin Neurosci, 2018, 30(4): 310-317. DOI: 10.1176/appi.neuropsych.18030047.
[2]
Pena-Gonzalez P, Mondragon-Maya A, Silva-Pereyra J, et al. Cognitive Reserve and Executive Functions in Adults with Type 2 Diabetes[J]. J Diabetes Res, 2020, 2020: 7941543. DOI: 10.1155/2020/7941543.
[3]
Ma YL, Chen HY, Wang JF, et al. Correlation of white matter microstructural changes with executive function impairment in patients with white matter lesions[J]. Chin J Behav Brain Sci, 2020(3): 239-240. DOI: 10.3760/cma.j.cn371468-20190924-00678.
[4]
Karim HT, Tudorascu DL, Cohen A, et al. Relationships Between Executive Control Circuit Activity, Amyloid Burden, and Education in Cognitively Healthy Older Adults[J]. Am J Geriatr Psychiatry, 2019, 27(12): 1360-1371. DOI: 10.1016/j.jagp.2019.07.008.
[5]
Vallesi A. On the utility of the trail making test in migraine with and without aura: a meta-analysis[J]. J Headache Pain, 2020, 21(1): 63. DOI: 10.1186/s10194-020-01137-y.
[6]
Zhang LJ, Wen J, Ni L, et al. Predominant gray matter volume loss in patients with end-stage renal disease: a voxel-based morphometry study[J]. Metab Brain Dis, 2013, 28(4): 647-654. DOI: 10.1007/s11011-013-9438-7.
[7]
Chou MC, Ko CH, Chang JM, et al. Disruptions of brain structural network in end-stage renal disease patients with long-term hemodialysis and normal-appearing brain tissues[J]. J Neuroradiol, 2019, 46(4): 256-262. DOI: 10.1016/j.neurad.2018.04.004.
[8]
Ding D, Ma XY, Li P, et al. Morphological study of ESRD patients before hemodialysis initiation based on SBM analysis[J]. J Xi'an Jiaotong University (Med Sci),2020, 41(2): 167-171. DOI: 10.7652/jdyxb202002002.
[9]
Ni L, Wen J, Zhang LJ, et al. Aberrant default-mode functional connectivity in patients with end-stage renal disease: a resting-state functional MR imaging study[J]. Radiology, 2014, 271(2): 543-552. DOI: 10.1148/radiol.13130816.
[10]
Tian XW, Eskeljiang H, Adiljiang A, et al. Study of amplitude of low-frequency fluctuations and brain functional connectivity in patients with end-stage renal disease of Uygur population in Southern of Xinjiang[J]. Chin J Magn Reson Imaging, 2021, 12(2):43-48. DOI: 10.12015/issn.1674-8034.2021.02.010.
[11]
Jin M, Wang L, Wang H, et al. Altered resting-state functional networks in patients with hemodialysis: a graph-theoretical based study[J]. Brain Imaging Behav, 2021, 15(2): 833-845. DOI: 10.1007/s11682-020-00293-8.
[12]
Zhang CY, Chen Y, Chen S, et al. Evaluation of Mental Disorders Using Proton Magnetic Resonance Spectroscopy in Dialysis and Predialysis Patients[J]. Kidney Blood Press Res, 2017, 42(4): 686-696. DOI: 10.1159/000484023.
[13]
Miyazawa H, Ookawara S, Ito K, et al. Association of cerebral oxygenation with estimated glomerular filtration rate and cognitive function in chronic kidney disease patients without dialysis therapy[J]. PLoS One, 2018, 13(6): e199366. DOI: 10.1371/journal.pone.0199366.
[14]
Bayard F, Nymberg TC, Abe C, et al. Distinct brain structure and behavior related to ADHD and conduct disorder traits[J]. Mol Psychiatry, 2020, 25(11): 3020-3033. DOI: 10.1038/s41380-018-0202-6.
[15]
Domic-Siede M, Irani M, Valdes J, et al. Theta activity from frontopolar cortex, mid-cingulate cortex and anterior cingulate cortex shows different roles in cognitive planning performance[J]. Neuroimage, 2021, 226: 117557. DOI: 10.1016/j.neuroimage.2020.117557.
[16]
Shen SC, Jiang XY. Research progress of voxelbased morphological measurements in cognitive impairment-related diseases[J]. Chin J Magn Reson Imaging, 2019, 10(11): 851-854. DOI: 10.12015/issn.1674-8034.2019.11.013.
[17]
Qiu Y, Lv X, Su H, et al. Structural and functional brain alterations in end stage renal disease patients on routine hemodialysis: a voxel-based morphometry and resting state functional connectivity study[J]. PLoS One, 2014, 9(5): e98346. DOI: 10.1371/journal.pone.0098346.
[18]
Prohovnik I, Post J, Uribarri J, et al. Cerebrovascular effects of hemodialysis in chronic kidney disease[J]. J Cereb Blood Flow Metab, 2007, 27(11): 1861-1869. DOI: 10.1038/sj.jcbfm.9600478.
[19]
Dong J, Ma X, Lin W, et al. Aberrant cortical thickness in neurologically asymptomatic patients with end-stage renal disease[J]. Neuropsychiatr Dis Treat, 2018, 14: 1929-1939. DOI: 10.2147/NDT.S170106.
[20]
Li P, Ma XY, Ding D, et al. Resting-state fMRI observation of abnormal spontaneous brain activity related to executive dysfunction in patients with end-stage renal disease[J]. Chin J Med Imaging Techno, 2018, 34(12): 1787-1791. DOI: 10.13929/j.1003-3289.201802092.
[21]
Cui Z, Li H, Xia CH, et al. Individual Variation in Functional Topography of Association Networks in Youth[J]. Neuron, 2020, 106(2): 340-353. DOI: 10.1016/j.neuron.2020.01.029.
[22]
Vogt BA. Midcingulate cortex: Structure, connections, homologies, functions and diseases[J]. J Chem Neuroanat, 2016, 74: 28-46. DOI: 10.1016/j.jchemneu.2016.01.010.
[23]
Vogt BA. Cingulate impairments in ADHD: Comorbidities, connections, and treatment[J]. Handb Clin Neurol, 2019, 166: 297-314. DOI: 10.1016/B978-0-444-64196-0.00016-9.
[24]
Fontes K, Rohlicek CV, Saint-Martin C, et al. Hippocampal alterations and functional correlates in adolescents and young adults with congenital heart disease[J]. Hum Brain Mapp, 2019, 40(12): 3548-3560. DOI: 10.1002/hbm.24615.
[25]
He WL, Huang G, Zhao LP. The hippocampus multimodal MRI progress of cognitive impairment[J]. Chin J Magn Reson Imaging, 2018, 12(4): 111-114. DOI: 10.12015/issn.1674-8034.2021.04.028.
[26]
Uddin LQ, Nomi JS, Hebert-Seropian B, et al. Structure and Function of the Human Insula[J]. J Clin Neurophysiol, 2017, 34(4): 300-306. DOI: 10.1097/WNP.0000000000000377.
[27]
Zhao J, Manza P, Wiers C, et al. Age-Related Decreases in Interhemispheric Resting-State Functional Connectivity and Their Relationship With Executive Function[J]. Front Aging Neurosci, 2020, 12: 20. DOI: 10.3389/fnagi.2020.00020.

PREV A pilot study of resting-state brain function in naive patients with primary hypothyroidism
NEXT Experimental study of Gd-EOB-DTPA dynamic contrast-enhanced magnetic resonance imaging quantitative assessment of moderate liver fibrosis value in rats
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn