Share:
Share this content in WeChat
X
Review
MRI quantitative susceptibility mapping: research advances in central nervous system
ZHANG Qihua  TAN Yan 

Cite this article as: Zhang QH, Tan Y. MRI quantitative susceptibility mapping: research advances in central nervous system[J]. Chin J Magn Reson Imaging, 2022, 13(1): 151-153, 170. DOI:10.12015/issn.1674-8034.2022.01.035.


[Abstract] Quantitative susceptibility mapping (QSM) is an extension of the susceptibility weighted imaging (SWI) technology, which can quantify the iron in tissues. It has advantages in displaying microvascular, monitoring blood oxygen saturation and differentiating microbleed and calcifications. It is conducive to early detection of diseases and early to provide reference for clinical decision-making. At present, QSM technology has been widely applied in clinical diseases and scientific research. This paper mainly reviews the research progress of QSM in central nervous system at home and abroad.
[Keywords] magnetic resonance imaging;quantitative susceptibility mapping;central nervous system;iron deposition;microbleeds;calcification

ZHANG Qihua1   TAN Yan2*  

1 College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China

2 Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China

Tan Y, E-mail: tanyan123456@sina.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 82071893, 81701681); Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province (No. 20200003); Youth Innovation Fund of First Hospital of Shanxi Medical University (No. YC1426).
Received  2021-07-31
Accepted  2021-12-17
DOI: 10.12015/issn.1674-8034.2022.01.035
Cite this article as: Zhang QH, Tan Y. MRI quantitative susceptibility mapping: research advances in central nervous system[J]. Chin J Magn Reson Imaging, 2022, 13(1): 151-153, 170. DOI:10.12015/issn.1674-8034.2022.01.035.

[1]
Milovic C, Tejos C, Acosta-Cabronero J, et al. The 2016 QSM Challenge: Lessons learned and considerations for a future challenge design. Magn Reson Med. 202084(3): 1624-1637. DOI: 10.1002/mrm.28185.
[2]
Li L, Leigh JS. Quantifying arbitrary magnetic susceptibility distributions with MR[J]. Magn Reson Med, 2004, 51(5): 1077-1082. DOI: 10.1002/mrm.20054.
[3]
Deistung A, Schweser F, Reichenbach JR. Overview of quantitative susceptibility mapping[J]. NMR Biomed, 2017, 30(4): DOI:10.1002/nbm.3569.
[4]
Yang X, Tao XF. Research progress and clinical applications of quantitative susceptibility mapping[J]. Int J Med Radiol, 2017, 40(5): 556-560. DOI: 10.19300/j.2017.Z4665.
[5]
Ke Y, Ming Qian Z. Iron misregulation in the brain: a primary cause of neurodegenerative disorders[J]. Lancet Neurol, 2003, 2(4): 246-53. DOI: 10.1016/s1474-4422(03)00353-3.
[6]
Breijyeh Z, Karaman R. Comprehensive Review on Alzheimer's Disease: Causes and Treatment[J]. Molecules, 2020, 25(24): 10.3390/molecules25245789
[7]
Vinayagamani S, Sheelakumari R, Sabarish S, et al. Quantitative Susceptibility Mapping: Technical Considerations and Clinical Applications in Neuroimaging[J]. J Magn Reson Imaging, 2021, 53(1): 23-37. DOI: 10.1002/jmri.27058.
[8]
Lotankar S, Prabhavalkar KS, Bhatt LK. Biomarkers for Parkinson's Disease: Recent Advancement[J]. Neurosci Bull, 2017, 33(5): 585-597. DOI: 10.1007/s12264-017-0183-5.
[9]
Armstrong MJ, Okun MS. Diagnosis and Treatment of Parkinson Disease: A Review[J]. Jama, 2020, 323(6): 548-560. DOI: 10.1001/jama.2019.22360.
[10]
Uchida Y, Kan H, Sakurai K, et al. Magnetic Susceptibility Associates With Dopaminergic Deficits and Cognition in Parkinson's Disease[J]. Mov Disord, 2020, 35(8): 1396-1405. DOI: 10.1002/mds.28077.
[11]
Thomas GEC, Leyland LA, Schrag AE, et al. Brain iron deposition is linked with cognitive severity in Parkinson's disease[J]. J Neurol Neurosurg Psychiatry. 2020, 91(4): 418-425. DOI: 10.1136/jnnp-2019-322042.
[12]
Snowden JS. The Neuropsychology of Huntington's Disease[J]. Arch Clin Neuropsychol, 2017, 32(7): 876-87. DOI: 10.1093/arclin/acx086.
[13]
Wyant KJ, Ridder AJ, Dayalu P. Huntington's Disease-Update on Treatments[J]. Curr Neurol Neurosci Rep, 2017, 17(4): 33. DOI: 10.1007/s11910-017-0739-9.
[14]
van Bergen JM, Hua J, Unschuld PG, et al. Quantitative Susceptibility Mapping Suggests Altered Brain Iron in Premanifest Huntington Disease[J]. AJNR Am J Neuroradiol, 2016, 37(5): 789-96. DOI: 10.3174/ajnr.A4617.
[15]
Langkammer C, Liu T, Khalil M, et al. Quantitative susceptibility mapping in multiple sclerosis[J]. Radiology, 2013, 267(2): 551-559. DOI: 10.1148/radiol.12120707.
[16]
Zhang S, Liu Z, Nguyen TD, et al. Clinical feasibility of brain quantitative susceptibility mapping[J]. Magn Reson Imaging, 2019, 60: 44-51. DOI: 10.1016/j.mri.2019.04.003.
[17]
Gillen KM, Mubarak M, Park C,et al. QSM is an imaging biomarker for chronic glial activation in multiple sclerosis lesions[J]. Ann Clin Transl Neurol, 2021, 8(4): 877-886. DOI: 10.1002/acn3.51338.
[18]
Eskreis-Winkler S, Zhang Y, Zhang J, et al. The clinical utility of QSM: disease diagnosis, medical management, and surgical planning[J]. NMR Biomed, 2017, 30(4). DOI: 10.1002/nbm.3668.
[19]
Acosta-Cabronero J, Machts J, Schreiber S, et al. Quantitative Susceptibility MRI to Detect Brain Iron in Amyotrophic Lateral Sclerosis[J]. Radiology, 2018, 289(1): 195-203. DOI: 10.1148/radiol.2018180112.
[20]
Schweitzer AD, Liu T, Gupta A, et al. Quantitative susceptibility mapping of the motor cortex in amyotrophic lateral sclerosis and primary lateral sclerosis[J]. AJR Am J Roentgenol, 2015, 204(5): 1086-1092. DOI: 10.2214/AJR.14.13459.
[21]
Wardlaw JM, Smith C, Dichgans M. Small vessel disease: mechanisms and clinical implications[J]. Lancet Neurol, 2019, 18(7): 684-696. DOI: 10.1016/s1474-4422(19)30079-1.
[22]
De A, Sun H, Emery DJ, et al. Rapid quantitative susceptibility mapping of intracerebral hemorrhage[J]. J Magn Reson Imaging, 2020, 51(3): 712-718. DOI: 10.1002/jmri.26850.
[23]
Wicaksono KP, Fushimi Y, Nakajima S, et al. Two-Minute Quantitative Susceptibility Mapping From Three-Dimensional Echo-Planar Imaging: Accuracy, Reliability, and Detection Performance in Patients With Cerebral Microbleeds[J]. Invest Radiol, 2021, 56(2): 69-77. DOI: 10.1097/rli.0000000000000708.
[24]
Schneider TM, Nagel AM, Zorn M, et al. Quantitative susceptibility mapping and (23) Na imaging-based in vitro characterization of blood clotting kinetics[J]. NMR Biomed, 2018, 31(6): e3926. DOI: 10.1002/nbm.3926.
[25]
Flemming KD, Lanzino G. Cerebral Cavernous Malformation: What a Practicing Clinician Should Know[J]. Mayo Clin Proc, 2020, 95(9): 2005-2020. DOI: 10.1016/j.mayocp.2019.11.005.
[26]
Awad IA, Polster SP. Cavernous angiomas: deconstructing a neurosurgical disease[J]. J Neurosurg, 2019, 131(1): 1-13. DOI: 10.3171/2019.3.JNS181724.
[27]
Biondetti E, Rojas-Villabona A, Sokolska M, et al. Investigating the oxygenation of brain arteriovenous malformations using quantitative susceptibility mapping[J]. Neuroimage. 2019, 199: 440-453. DOI: 10.1016/j.neuroimage.2019.05.014.
[28]
Zhang S, Cho J, Nguyen TD, et al. Initial Experience of Challenge-Free MRI-Based Oxygen Extraction Fraction Mapping of Ischemic Stroke at Various Stages: Comparison With Perfusion and Diffusion Mapping[J]. Front Neurosci. 2020, 14: 535441. DOI: 10.3389/fnins.2020.535441.
[29]
Lapointe S, Perry A, Butowski NA. Primary brain tumours in adults[J]. Lancet, 2018, 392(10145): 432-446. DOI: 10.1016/s0140-6736(18)30990-5.
[30]
Chen R, Smith-Cohn M, Cohen AL, et al. Glioma Subclassifications and Their Clinical Significance[J]. Neurotherapeutics, 2017, 14(2): 284-297. DOI: 10.1007/s13311-017-0519-x.
[31]
Deistung A, Schweser F, Wiestler B, et al. Quantitative susceptibility mapping differentiates between blood depositions and calcifications in patients with glioblastoma[J]. PLoS One, 2013, 8(3): e57924. DOI: 10.1371/journal.pone.0057924.
[32]
Özbay PS, Stieb S, Rossi C, et al. Lesion magnetic susceptibility response to hyperoxic challenge: A biomarker for malignant brain tumor microenvironment?[J]. Magn Reson Imaging, 2018, 47: 147-153. DOI: 10.1016/j.mri.2017.12.004.
[33]
Nosrati R, Paudel M, Ravi A, et al. Potential applications of the quantitative susceptibility mapping (QSM) in MR-guided radiation therapy[J]. Phys Med Biol, 2019, 64(14): 145013. DOI: 10.1088/1361-6560/ab2623.
[34]
Youngblood MW, Miyagishima DF, Jin L, et al. Associations of meningioma molecular subgroup and tumor recurrence[J]. Neuro Oncol, 2021, 23(5): 783-794. DOI: 10.1093/neuonc/noaa226.
[35]
Hwang WL, Marciscano AE, Niemierko A, et al. Imaging and extent of surgical resection predict risk of meningioma recurrence better than WHO histopathological grade[J]. Neuro Oncol, 2016, 18(6): 863-872. DOI: 10.1093/neuonc/nov285.
[36]
Sharma SD, Hernando D, Horng DE, et al. Quantitative susceptibility mapping in the abdomen as an imaging biomarker of hepatic iron overload[J]. Magn Reson Med, 2015, 74(3): 673-783. DOI: 10.1002/mrm.25448.
[37]
Jafari R, Hectors SJ, Koehne de González AK, et al. Integrated quantitative susceptibility and R2* mapping for evaluation of liver fibrosis: An ex vivo feasibility study[J]. NMR Biomed, 2021, 34(1): e4412. DOI: 10.1002/nbm.4412.
[38]
Wang L, Nissi MJ, Toth F, et al. Quantitative susceptibility mapping detects abnormalities in cartilage canals in a goat model of preclinical osteochondritis dissecans[J]. Magn Reson Med, 2017, 77(3): 1276-1283. DOI: 10.1002/mrm.26214.
[39]
Wen Y, Nguyen TD, Liu Z, et al. Cardiac quantitative susceptibility mapping (QSM) for heart chamber oxygenation[J]. Magn Reson Med, 2018, 79(3): 1545-1552. DOI: 10.1002/mrm.26808.
[40]
Sollmann N, Löffler MT, Kronthaler S, et al. MRI-Based Quantitative Osteoporosis Imaging at the Spine and Femur[J]. J Magn Reson Imaging, 2021, 54(1): 12-35. DOI: 10.1002/jmri.27260.
[41]
Bechler E, Stabinska J, Thiel T, et al. Feasibility of quantitative susceptibility mapping (QSM) of the human kidney[J]. MAGMA. 2021, 34(3): 389-397. DOI: 10.1007/s10334-020-00895-9.
[42]
Zun Z, Kapse K, Quistorff J, et al. Feasibility of QSM in the human placenta[J]. Magn Reson Med, 2021, 85(3): 1272-1281. DOI: 10.1002/mrm.28502.

PREV Research progress of white matter microstructure analysis methods based on diffusion tensor imaging in visual pathway injury
NEXT Study progress of magnetic resonance imaging in age-related macular degeneration
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn