Share:
Share this content in WeChat
X
Review
Study progress of magnetic resonance imaging in age-related macular degeneration
WANG Yige  GAO Wenwen  LIU Bing  MA Guolin 

Cite this article as: Wang YG, Gao WW, Liu B, et al. Study progress of magnetic resonance imaging in age-related macular degeneration[J]. Chin J Magn Reson Imaging, 2022, 13(1): 154-156, 160. DOI:10.12015/issn.1674-8034.2022.01.036.


[Abstract] Age-related macular degeneration (AMD) usually occurs in middle-aged and elderly people aged 50 or above, developing progressively, which can lead to monocular or binocular partial or even complete vision loss. It is the primary cause of vision loss in the elderly. In recent years, researchers can non-invasively examine the effects of eye disease on the visual pathway even the whole central nervous system by using magnetic resonance imaging (MRI) technique. This paper mainly reviews the research progress of MRI in AMD in recent years from the aspects of structural magnetic resonance imaging,blood oxygenation level dependent functional magnetic resonance imaging (BOLD-fMRI) and diffusion-weighted magnetic resonance imaging (dMRI).
[Keywords] magnetic resonance imaging;age-related macular degeneration;central mechanism;blood oxygen level dependent magnetic resonance imaging;diffusion weighted imaging;retinopathy

WANG Yige1, 2   GAO Wenwen2   LIU Bing1, 2   MA Guolin2*  

1 Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China

2 Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, China

Ma GL, E-mail: maguolin1007@qq.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Key R&D Program of China (No. 2020YFC2003903、2020YFC2007301、2019YFC0120903); National Natural Science Foundation of China (No. 81971585、81571641); Guangzhou Science and Technology Planning Project (No. 202103010001); Beijing Municipal Science and Technology Project (No. Z211100003521009).
Received  2021-08-31
Accepted  2021-11-15
DOI: 10.12015/issn.1674-8034.2022.01.036
Cite this article as: Wang YG, Gao WW, Liu B, et al. Study progress of magnetic resonance imaging in age-related macular degeneration[J]. Chin J Magn Reson Imaging, 2022, 13(1): 154-156, 160. DOI:10.12015/issn.1674-8034.2022.01.036.

[1]
Wang SB, Wang XR, Cheng YQ, et al. Autophagy Dysfunction, Cellular Senescence, and Abnormal Immune-Inflammatory Responses in AMD: From Mechanisms to Therapeutic Potential[J]. Oxid Med Cell Longev, 2019, 2019: 3632169. DOI: 10.1155/2019/3632169.
[2]
Hernández-Zimbrón LF, Zamora-Alvarado R, Ochoa-De la Paz L, et al. Age-Related Macular Degeneration: New Paradigms for Treatment and Management of AMD[J]. Oxid Med Cell Longev, 2018, 2018: 8374647. DOI: 10.1155/2018/8374647.
[3]
Khanna S, Komati R, Eichenbaum DA, et al. Current and upcoming anti-VEGF therapies and dosing strategies for the treatment of neovascular AMD: a comparative review[J]. BMJ Open Ophthalmol, 2019, 4: e000398. DOI: 10.1136/bmjophth-2019-000398.
[4]
Brown HD, Woodall RL, Kitching RE, et al. Using magnetic resonance imaging to assess visual deficits: a review[J]. 2016, 36: 240-265. DOI: 10.1111/opo.12293.
[5]
Liang ML, Xiao H, Xie B, et al. Morphologic changes in the visual cortex of patients with anisometropic amblyopia: a surface-based morphometry study[J]. BMC Neurosci, 2019, 20: 39. DOI: 10.1186/s12868-019-0524-6.
[6]
Cheng T, Huang XH, Kuang J, et al. Research progress of surface-based morphometry in the central nervous system[J]. Int J Med Radiol, 2020, 1: 35-40. DOI: 10.19300/j.2020.Z17460.
[7]
Hanson RLW, Gale RP, Gouws AD, et al. Following the Status of Visual Cortex Over Time in Patients With Macular Degeneration Reveals Atrophy of Visually Deprived Brain Regions[J]. 2019, 60: 5045-5051. DOI: 10.1167/iovs.18-25823.
[8]
Prins D, Jansonius NM, Cornelissen FW. Loss of Binocular Vision in Monocularly Blind Patients Causes Selective Degeneration of the Superior Lateral Occipital Cortices[J]. Invest Ophthalmol Vis Sci, 2017, 58: 1304-1313. DOI: 10.1167/iovs.16-20404.
[9]
Hernowo AT, Prins D, Baseler HA, et al. Morphometric analyses of the visual pathways in macular degeneration[J]. 2014, 56: 99-110. DOI: 10.1016/j.cortex.2013.01.003.
[10]
Qiu YY, Sun TT, Xu FJ, et al. Correlation of vascular change and cognitive impairment in age-related macular degeneration patients[J]. Am J Transl Res, 2021, 13: 336-348.
[11]
Amadoro G, Latina V, Balzamino BO, et al. Nerve Growth Factor-Based Therapy in Alzheimer's Disease and Age-Related Macular Degeneration[J]. Front Neurosci, 2021, 15: 735928. DOI: 10.3389/fnins.2021.735928.
[12]
Shen YK, Ge QM, Pan YC, et al. Decreased gray matter volume and increased white matter volume in patients with neovascular age-related macular degeneration: a voxel-based morphometry study. Aging (Albany NY), 2021, 13(19): 23182-23192. DOI: 10.18632/aging.203610.
[13]
Stanga PE, Tsamis E, Siso-Fuertes I, et al. Electronic retinal prosthesis for severe loss of vision in geographic atrophy in age-related macular degeneration: First-in-human use[J]. Eur J Ophthalmol, 2021, DOI: 10.1177/11206721211000680.
[14]
Kucikova L, Goerdten J, Dounavi ME, et al. Resting-state brain connectivity in healthy young and middle-aged adults at risk of progressive Alzheimer's disease[J]. Neurosci Biobehav Rev, 2021, 129: 142-153. DOI: 10.1016/j.neubiorev.2021.07.024.
[15]
Zuo X, Zhuang J, Chen NK, et al. Relationship between neural functional connectivity and memory performance in age-related macular degeneration[J]. 2020, 95: 176-185. DOI: 10.1016/j.neurobiolaging.2020.07.020.
[16]
Whitson HE, Chou YH, Potter GG, et al. Phonemic fluency and brain connectivity in age-related macular degeneration: a pilot study[J]. 2015, 5: 126-135. DOI: 10.1089/brain.2014.0277.
[17]
Plank T, Rosengarth K, Schmalhofer C, et al. Perceptual learning in patients with macular degeneration[J]. 2014, 5: 1189. DOI: 10.3389/fpsyg.2014.01189.
[18]
Masuda Y, Takemura H, Terao M, et al. V1 Projection Zone Signals in Human Macular Degeneration Depend on Task Despite Absence of Visual Stimulus[J]. CurrBiol, 2021, 31: 406-412. DOI: 10.1016/j.cub.2020.10.034.
[19]
Ramanoël S, Chokron S, Hera R, et al. Age-related macular degeneration changes the processing of visual scenes in the brain[J]. Vis Neurosci, 2018, 35: E006. DOI: 10.1017/S0952523817000372.
[20]
Haak KV, Morland AB, Rubin GS, et al. Preserved retinotopic brain connectivity in macular degeneration[J]. Ophthalmic Physiol Opt, 2016, 36: 335-343. DOI: 10.1111/opo.12279.
[21]
Sabbah N, Sanda N, Authié CN, et al. Reorganization of early visual cortex functional connectivity following selective peripheral and central visual loss[J]. Sci Rep, 2017, 7: 43223. DOI: 10.1038/srep43223.
[22]
Melillo P, Prinster A, Di Iorio V, et al. Visual Cortex Activation in Patients With Stargardt Disease[J]. Invest Ophthalmol Vis Sci, 2018, 59: 1503-1511. DOI: 10.1136/bjophthalmol-2017-311443.
[23]
Zanin J, Dhollander T, Farquharson S, et al. Review: Using diffusion-weighted magnetic resonance imaging techniques to explore the microstructure and connectivity of subcortical white matter tracts in the human auditory system[J]. Hear Res, 2019, 377: 1-11. DOI: 10.1016/j.heares.2019.02.014.
[24]
Guevara M, Guevara P, Román C, et al. Superficial white matter: A review on the dMRI analysis methods and applications[J]. 2020, 212: 116673. DOI: 10.1016/j.neuroimage.2020.116673.
[25]
Qu X, Wang Q, Chen W, et al. Combined machine learning and diffusion tensor imaging reveals altered anatomic fiber connectivity of the brain in primary open-angle glaucoma[J]. Brain Res. 2019, 1718: 83-90. DOI: 10.1016/j.brainres.2019.05.006.
[26]
Andica C, Kamagata K, Hatano T, et al. MR Biomarkers of Degenerative Brain Disorders Derived From Diffusion Imaging[J]. J Magn Reson Imaging, 2020, 52: 1620-1636. DOI: 10.1002/jmri.27019.
[27]
Gong ZB, Chen HH, Liu SF, et al. Research progress of magnetic resonance diffusion spectrum imaging in the nervous system[J]. Chin J Magn Reson Imaging, 2020, 11(9): 809-812,816. DOI: 10.12015/issn.1674-8034.2020.09.020.
[28]
Liang LH, Lin H, Lin F, et al. Quantitative visual pathway abnormalities predict visual field defects in patients with pituitary adenomas: a diffusion spectrum imaging study[J]. Eur Radiol, 2021, 31(11): 8187-8196. DOI: 10.1007/s00330-021-07878-x.
[29]
Malania M, Konrad J, Jägle H, et al. Compromised Integrity of Central Visual Pathways in Patients With Macular Degeneration[J]. Invest Ophthalmol Vis Sci, 2017, 58: 2939-2947. DOI: 10.1167/iovs.16-21191.
[30]
Yoshimine S, Ogawa S, Horiguchi H, et al. Age-related macular degeneration affects the optic radiation white matter projecting to locations of retinal damage[J]. Brain Struct Funct, 2018, 223(8): 3889-3900. DOI: 10.1007/s00429-018-1702-5.
[31]
Beer AL, Plank T, Greenlee MW. Aging and central vision loss: Relationship between the cortical macro-structure and micro-structure[J]. Neuroimage, 2020, 212: 116670. DOI: 10.1016/j.neuroimage.2020.116670.
[32]
Zhuang J, Madden DJ, Cunha P, et al. Cerebral white matter connectivity, cognition, and age-related macular degeneration[J]. Neuroimage Clin, 2021, 30:102594. DOI: 10.1016/j.nicl.2021.102594.

PREV MRI quantitative susceptibility mapping: research advances in central nervous system
NEXT Research progress of proton magnetic resonance spectroscopy in primary insomnia
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn