Share:
Share this content in WeChat
X
Original Article
Brain function study in T2DM comorbidity depression based on resting state degree centrality
LI Zhoule  ZHAO Lianping  HUANG Gang  LIU Ruifang  TIAN Jing  LU Yashan  WEI Jia 

Cite this article as: Li ZL, Zhao LP, Huang G, et al. Brain function study in T2DM comorbidity depression based on resting state degree centrality[J]. Chin J Magn Reson Imaging, 2022, 13(2): 37-41. DOI:10.12015/issn.1674-8034.2022.02.008.


[Abstract] Objective To explore the abnormal patterns of brain functional networks in type 2 diabetes comorbid depression (T2DD) by using Degree Centrality (DC) method of resting state functional magnetic resonance imaging. To further elucidate the neuroimaging mechanisms of T2DD.Materials and Methods Fifty-six T2DD patients, 59 type 2 diabetes mellitus (T2DM) patients without depression and 57 healthy volunteers were prospectively enrolled. The whole brain DC values of the three groups were compared, and the correlation analysis between the DC values of the brain regions with significant differences and clinical variables and cognitive psychological scale was extracted.Results Compared with control group and T2DM without depression group, T2DD group had lower cognitive score, depression score and anxiety score. Compared with the control group, the DC value of the right posterior cingulate gyrus decreased in T2DM without depression group, and the DC value of the right transverse temporal gyrus increased in T2DD group (GRF correction, voxel P<0.001, cluster P<0.05), no correlation was found between the DC values of these brain regions and the clinical data and the cognitive psychosocial scale scoring.Conclusions T2DD patients are associated with more severe emotional abnormalities and cognitive impairment. In resting state, abnormal topology of the functional network of the right transverse temporal gyrus may be a potential neuroimaging biological marker of T2DD brain damage.
[Keywords] diabetes mellitus, type 2;depression;comorbidity;functional brain imaging

LI Zhoule1   ZHAO Lianping2*   HUANG Gang2   LIU Ruifang1   TIAN Jing1   LU Yashan2   WEI Jia3  

1 The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China

2 Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China

3 Department of Functional Division, Gansu Province People Hospital, Lanzhou 730000, China

Zhao LP, E-mail: lianping_zhao007@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 81901724, 81860306); Natural Science Foundation of Gansu Province (No. 20JR5RA156, 21JR7RA593); Research project of Gansu Provincial People's Hospital(No. 19SYPYA-2); "Young Scholars in West China" program of The Chinese Academy of Sciences in 2020.
Received  2021-09-01
Accepted  2022-01-24
DOI: 10.12015/issn.1674-8034.2022.02.008
Cite this article as: Li ZL, Zhao LP, Huang G, et al. Brain function study in T2DM comorbidity depression based on resting state degree centrality[J]. Chin J Magn Reson Imaging, 2022, 13(2): 37-41. DOI:10.12015/issn.1674-8034.2022.02.008.

[1]
Goyal R, Jialal I. Diabetes mellitus type 2[M]. Treasure Island (FL):StatPearls Publishing, 2021.
[2]
Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications[J]. Nat Rev Endocrinol, 2018, 14(2): 88-98. DOI: 10.1038/nrendo.2017.151.
[3]
Khaledi M, Haghighatdoost F, Feizi A, et al. The prevalence of comorbid depression in patients with type 2 diabetes: an updated systematic review and meta-analysis on huge number of observational studies[J]. Acta Diabetol, 2019, 56(6): 631-650. DOI: 10.1007/s00592-019-01295-9.
[4]
Wu SN, Zhang MY, Shu HY, et al. Changes in functional connectivity of specific cerebral regions in patients with toothache: a resting-state functional magnetic resonance imaging study[J]. Dis Markers, 2020, 2020: 6683161. DOI: 10.1155/2020/6683161.
[5]
Zhang HF, Qiu MH, Ding L, et al. Intrinsic gray-matter connectivity of the brain in major depressive disorder[J]. J Affect Disord, 2019, 251: 78-85. DOI: 10.1016/j.jad.2019.01.048.
[6]
Liu DH, Duan SS, Zhou CY, et al. Altered brain functional hubs and connectivity in type 2 diabetes mellitus patients: a resting-state fMRI study[J]. Front Aging Neurosci, 2018, 10: 55. DOI: 10.3389/fnagi.2018.00055.
[7]
Xia WQ, Luo Y, Chen YC, et al. Glucose fluctuations are linked to disrupted brain functional architecture and cognitive impairment[J]. J Alzheimers Dis, 2020, 74(2): 603-613. DOI: 10.3233/JAD-191217.
[8]
Feng Y, Li YF, Tan X, et al. Altered gray matter volume, functional connectivity, and degree centrality in early-onset type 2 diabetes mellitus[J]. Front Neurol, 2021, 12: 697349. DOI: 10.3389/fneur.2021.697349.
[9]
Zhao CC, Cai HB, Wang H, et al. Correlation between serum renin-angiotensin system (RAS) level and depression and anxiety symptoms in patients with Parkinson's disease[J]. Saudi J Biol Sci, 2021, 28(4): 2146-2154. DOI: 10.1016/j.sjbs.2021.02.029.
[10]
Zhang LY, Cao B, Zou YT, et al. Depression and anxiety in multiple system atrophy[J]. Acta Neurol Scand, 2018, 137(1): 33-37. DOI: 10.1111/ane.12804.
[11]
Cui Y, Li SF, Gu H, et al. Disrupted brain connectivity patterns in patients with type 2 diabetes[J]. AJNR Am J Neuroradiol, 2016, 37(11): 2115-2122. DOI: 10.3174/ajnr.A4858.
[12]
Roy JF, Lozano del Hoyo ML, Urcola-Pardo F, et al. The TELE-DD project on treatment nonadherence in the population with type 2 diabetes and comorbid depression[J]. Sci Rep, 2021, 11(1): 8889. DOI: 10.1038/s41598-021-87410-9.
[13]
Lu YS, Huang G, Zhao LP. Research progress on neuropathophysiological mechanism of patients with type 2 diabetes comorbid depression[J]. Chin J Psychiatry, 2020, 53(3): 263-266. DOI: 10.3760/cma.j.cn113661-20190626-00212.
[14]
Belvederi Murri M, Mamberto S, Briatore L, et al. The interplay between diabetes, depression and affective temperaments: a structural equation model[J]. J Affect Disord, 2017, 219: 64-71. DOI: 10.1016/j.jad.2017.05.018.
[15]
Cukierman T, Gerstein HC, Williamson JD. Cognitive decline and dementia in diabetes: systematic overview of prospective observational studies[J]. Diabetologia, 2005, 48(12): 2460-2469. DOI: 10.1007/s00125-005-0023-4.
[16]
Tyagi K, Agarwal NB, Kapur P, et al. Evaluation of stress and associated biochemical changes in patients with type 2 diabetes mellitus and obesity[J]. Diabetes Metab Syndr Obes, 2021, 14: 705-717. DOI: 10.2147/DMSO.S294555.
[17]
Nguyen L, Kakeda S, Watanabe K, et al. Brain structural network alterations related to serum cortisol levels in drug-naïve, first-episode major depressive disorder patients: a source-based morphometric study[J]. Sci Rep, 2020, 10: 22096. DOI: 10.1038/s41598-020-79220-2.
[18]
Brewer JA, Worhunsky PD, Gray JR, et al. Meditation experience is associated with differences in default mode network activity and connectivity[J]. Proc Natl Acad Sci USA, 2011, 108(50): 20254-20259. DOI: 10.1073/pnas.1112029108.
[19]
Costumero V, Rosell-Negre P, Bustamante JC, et al. Left frontoparietal network activity is modulated by drug stimuli in cocaine addiction[J]. Brain Imaging Behav, 2018, 12(5): 1259-1270. DOI: 10.1007/s11682-017-9799-3.
[20]
Kim S, Im S, Lee J, et al. Disrupted control network connectivity in abstinent patients with alcohol dependence[J]. Psychiatry Investig, 2017, 14(3): 325-332. DOI: 10.4306/pi.2017.14.3.325.
[21]
Buckner RL, Andrews-Hanna JR, Schacter DL. The brain's default network: anatomy, function, and relevance to disease[J]. Ann N Y Acad Sci, 2008, 1124: 1-38. DOI: 10.1196/annals.1440.011.
[22]
Liao HY, Cai SN, Shen Q, et al. Networks are associated with depression in patients with Parkinson's disease: a resting-state imaging study[J]. Front Neurosci, 2021, 14: 573538. DOI: 10.3389/fnins.2020.573538.
[23]
Leech R, Sharp DJ. The role of the posterior cingulate cortex in cognition and disease[J]. Brain, 2014, 137(Pt 1): 12-32. DOI: 10.1093/brain/awt162.
[24]
Zhou KJ, Zhou MH, Wu SX, et al. Right temporal lobe epilepsy: abnormal functional and structural connectivity in the posterior cingulate cortex and their relationship with alertness performance[J]. Chin J Nerv Ment Dis, 2017, 43(1): 13-18. DOI: 10.3969/j.issn.1002-0152.2017.01.004.
[25]
Ge F, Wu JX, Cheng QP, et al. Correlative analysis of blood glucose fluctuation and brain function in type 2 diabetic patients[J]. Med Innov China, 2017, 14(16): 21-24. DOI: 10.3969/j.issn.1674-4985.2017.16.006.
[26]
Pinti MV, Fink GK, Hathaway QA, et al. Mitochondrial dysfunction in type 2 diabetes mellitus: an organ-based analysis[J]. Am J Physiol Endocrinol Metab, 2019, 316(2): E268-E285. DOI: 10.1152/ajpendo.00314.2018.
[27]
Roy B, Ehlert L, Mullur R, et al. Regional brain gray matter changes in patients with type 2 diabetes mellitus[J]. Sci Rep, 2020, 10(1): 9925. DOI: 10.1038/s41598-020-67022-5.
[28]
Liu J, Liu TY, Wang WH, et al. Reduced gray matter volume in patients with type 2 diabetes mellitus[J]. Front Aging Neurosci, 2017, 9: 161. DOI: 10.3389/fnagi.2017.00161.
[29]
Yau PL, Kluger A, Borod JC, et al. Neural substrates of verbal memory impairments in adults with type 2 diabetes mellitus[J]. J Clin Exp Neuropsychol, 2014, 36(1): 74-87. DOI: 10.1080/13803395.2013.869310.
[30]
Warrier C, Wong P, Penhune V, et al. Relating structure to function: Heschl's gyrus and acoustic processing[J]. J Neurosci, 2009, 29(1): 61-69. DOI: 10.1523/JNEUROSCI.3489-08.2009.
[31]
Suzuki Y, Enatsu R, Kanno A, et al. The auditory cortex network in the posterior superior temporal area[J]. Clin Neurophysiol, 2018, 129(10): 2132-2136. DOI: 10.1016/j.clinph.2018.07.014.
[32]
Fuster JM. Frontal lobe and cognitive development[J]. J Neurocytol, 2002, 31(3/4/5): 373-385. DOI: 10.1023/a:1024190429920.
[33]
Magnus W, Nazir S, Anilkumar AC, et al. Attention deficit hyperactivity disorder[M]. Treasure Island (FL):StatPearls Publishing, 2021.
[34]
Klaassens BL, van Gorsel HC, Khalili-Mahani N, et al. Single-dose serotonergic stimulation shows widespread effects on functional brain connectivity[J]. Neuroimage, 2015, 122: 440-450. DOI: 10.1016/j.neuroimage.2015.08.012.
[35]
Morshedi M, Valenlia KB, Hosseinifard ES, et al. Beneficial psychological effects of novel psychobiotics in diabetic rats: the interaction among the gut, blood and amygdala[J]. J Nutr Biochem, 2018, 57: 145-152. DOI: 10.1016/j.jnutbio.2018.03.022.
[36]
du ZD, Wei W, Yu SK, et al. NADPH oxidase 2-mediated insult in the auditory cortex of zucker diabetic fatty rats[J]. Neural Plast, 2019, 2019: 3591605. DOI: 10.1155/2019/3591605.
[37]
Fried PJ, Schilberg L, Brem AK, et al. Humans with type-2 diabetes show abnormal long-term potentiation-like cortical plasticity associated with verbal learning deficits[J]. J Alzheimers Dis, 2017, 55(1): 89-100. DOI: 10.3233/JAD-160505.

PREV Changes of resting-state brain functional activities in breast cancer patients after neoadjuvant chemotherapy: a short-term longitudinal study
NEXT Study on multi-voxel 1H-MRS in brain of chronic mountain sickness
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn