Share:
Share this content in WeChat
X
Investigation Reseach
Intravoxel incoherent motion diffusion-weighted imaging for assessment of the differential diagnosis and Gleason grade in prostate cancer: a Meta-analysis
GUO Dingbo  ZENG Guofei  YANG Hua  LI Xuejiao  OU Fangyuan 

Cite this article as: Guo DB, Zeng GF, Yang H, et al. Intravoxel incoherent motion diffusion-weighted imaging for assessment of the differential diagnosis and Gleason grade in prostate cancer: a Meta-analysis[J]. Chin J Magn Reson Imaging, 2022, 13(2): 69-74. DOI:10.12015/issn.1674-8034.2022.02.014.


[Abstract] Objective To explore the value of parameters of intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI), including apparent diffusion coefficient (ADC), true diffusion coefficient (D), pseudo-diffusion coefficient (D*) and perfusion fraction (f) in the differential diagnosis and Gleason grade of prostate cancer (PCa).Materials and Methods A literature search on Embase, Medline, PubMed and Cochrane Library was performed to identify all the relevant studies characterizing differential diagnosis and Gleason grade of PCa by IVIM DWI published until August 2021. Stata 15.0 software was used for statistics analysis, for continuous variables, weighted mean difference (WMD) with corresponding 95% confidence interval (95% CI) was used as the statistical effect size, and forest maps were drawn. In addition, subgroup analysis was conducted to assess for heterogeneity, and risk of bias was assessed by Begg's test.Results A total of 13 articles were included, involving 504 patients and 821 ROIs. The pooled results of IVIM parameters for differentiating between PCa and healthy peripheral zone (PZ) showed that ADC, D and f values were significantly lower in regions of PCa compared to those of regions of PZ {WMD=-0.82 [95% CI (-1.01--0.64)], Z=8.69, P<0.0001; WMD=-0.54 [95% CI (-0.78--0.29)], Z=4.34, P<0.0001; WMD=-6.91 [95% CI (-12.12--1.70)], Z=2.60, P<0.0001}. In addition, D was significantly lower than ADC in the regions of PCa {WMD=-0.20 [95% CI (-0.38--0.03)], Z=2.26, P=0.02}. Compared with the low-grade (LG) PCa group, the pooled results showed that ADC value and D value in intermediate/high-grade (HG) PCa were significantly decreased {WMD=-0.24 [95% CI (-0.30--0.19)], Z=8.06, P<0.001; WMD=-0.25 [95% CI (-0.33--0.17)], Z=5.99, P<0.001}.Conclusions IVIM parameters are suitable for the differential diagnosis of PCa, and the D value may be more valuable than the ADC value in the characterization of PCa lesions. In addition, ADC value and D value can further distinguish LG and HG prostate cancer.
[Keywords] prostate cancer;intravoxel incoherent motion;diffusion-weighted imaging;Gleason grade;differential diagnosis

GUO Dingbo   ZENG Guofei   YANG Hua   LI Xuejiao   OU Fangyuan*  

Department of Radiology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China

OU FY, E-mail: ofy0705@126.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Chongqing Natural Science Foundation of China (No. cstc2020jcyj-msxmX0751); Joint Medical Research Project of Chongqing Science and Technology Commission and Chongqing Health Commission (No. 2019QNXM010).
Received  2021-10-09
Accepted  2021-12-31
DOI: 10.12015/issn.1674-8034.2022.02.014
Cite this article as: Guo DB, Zeng GF, Yang H, et al. Intravoxel incoherent motion diffusion-weighted imaging for assessment of the differential diagnosis and Gleason grade in prostate cancer: a Meta-analysis[J]. Chin J Magn Reson Imaging, 2022, 13(2): 69-74. DOI:10.12015/issn.1674-8034.2022.02.014.

[1]
Siegel RL, Miller KD, Fuchs HE, et al. Cancer Statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1): 7-33. DOI: 10.3322/caac.21654.
[2]
Swanson GP, Trevathan S, Hammonds KAP, et al. Gleason Score Evolution and the Effect on Prostate Cancer Outcomes[J]. Am J Clin Pathol, 2021, 155(5): 711-717. DOI: 10.1093/ajcp/aqaa130.
[3]
Kim M, Wu S, Lin SX, et al. Transperineal Multiparametric Magnetic Resonance Imaging-Ultrasound Fusion Targeted Prostate Biopsy Combined with Standard Template Improves Prostate Cancer Detection[J]. J Urol, 2021, 25. DOI: 10.1097/JU.0000000000002168.
[4]
Iima M, Kataoka M, Kanao S, et al. Variability of non-Gaussian diffusion MRI and intravoxel incoherent motion (IVIM) measurements in the breast[J]. PLoS One, 2018, 13(3): e0193444. DOI: 10.1371/journal.pone.0193444.
[5]
Tamada T, Kido A, Yamamoto A, et al. Comparison of Biparametric and Multiparametric MRI for Clinically Significant Prostate Cancer Detection With PI-RADS Version 2.1[J]. J Magn Reson Imaging, 2021, 3(1): 283-291. DOI: 10.1002/jmri.27283.
[6]
Qu YJ, Yang ZR, Sun F, et al. Risk on bias assessment: (6) A Revised Tool for the Quality Assessment on Diagnostic Accuracy Studies (QUADAS-2)[J]. Chin J Epidemiol, 2018, 39(4): 524-531. DOI: 10.3760/cma.j.issn.0254-6450.2018.04.028.
[7]
Hao X, Shi Y, Zhu J, et al. Evaluating influential factors of acupuncture for tension-type headache: A protocol for systematic review and meta-analysis[J]. Medicine (Baltimore), 2020, 99(46): e23118. DOI: 10.1097/MD.0000000000023118.
[8]
Kuru TH, Roethke MC, Stieltjes B, et al. Intravoxel Incoherent Motion (IVIM) Diffusion Imaging in Prostate Cancer - What Does It Add?[J]. J Comput Assist Tomogr, 2014, 38(4): 558-564. DOI: 10.1097/RCT.0000000000000088.
[9]
Mazaheri Y, Hötker AM, Shukla-Dave A, et al. Model selection for high b-value diffusion-weighted MRI of the prostate[J]. Magn Reson Imaging, 2018, 46: 21-27. DOI: 10.1016/j.mri.2017.10.003.
[10]
Quentin M, Blondin D, Klasen J, et al. Comparison of different mathematical models of diffusion-weighted prostate MR imaging[J]. Magn Reson Imaging, 2012, 30(10): 1468-1474. DOI: 10.1016/j.mri.2012.04.025.
[11]
Riches SF, Hawtin K, Charles-Edwards EM, et al. Diffusion-weighted imaging of the prostate and rectal wall: comparison of biexponential and monoexponential modelled diffusion and associated perfusion coefficients[J]. Nmr in Biomedicine, 2009, 22(3): 318-325. DOI: 10.1002/nbm.1328.
[12]
Shinmoto H, Tamura C, Soga S, et al. An Intravoxel Incoherent Motion Diffusion-Weighted Imaging Study of Prostate Cancer[J]. Ajr Am J Roentgenol, 2012, 199(4): W496-W500. DOI: 10.2214/AJR.11.8347.
[13]
Shinmoto H, Oshio K, Tanimoto A, et al. Biexponential apparent diffusion coefficients in prostate cancer[J]. Magn Reson Imaging, 2009, 27(3): 355-359. DOI: 10.1016/j.mri.2008.07.008.
[14]
Ueda Y, Takahashi S, Ohno N, et al. Triexponential function analysis of diffusion-weighted MRI for diagnosing prostate cancer[J]. J Magn Reson Imaging, 2016, 43(1): 138-148. DOI: 10.1002/jmri.24974.
[15]
Beyhan M, Sade R, Koc E, et al. The evaluation of prostate lesions with IVIM DWI and MR perfusion parameters at 3T MRI[J]. Radiol Med, 2019, 124(2): 87-93. DOI: 10.1007/s11547-018-0930-3.
[16]
Pesapane F, Patella F, Fumarola EM, et al. Intravoxel Incoherent Motion (IVIM) Diffusion Weighted Imaging (DWI) in the Periferic Prostate Cancer Detection and Stratification[J]. Med Oncol, 2017, 34(3): 35. DOI: 10.1007/s12032-017-0892-7.
[17]
Valerio M, Zini C, Fierro D, et al. 3T multiparametric MRI of the prostate: Does intravoxel incoherent motion diffusion imaging have a role in the detection and stratification of prostate cancer in the peripheral zone?[J]. Eur J Radiol, 2016, 85(4): 790-794. DOI: 10.1016/j.ejrad.2016.01.006.
[18]
Yuan Q, Costa DN, Sénégas J, et al. Quantitative diffusion-weighted imaging and dynamic contrast-enhanced characterization of the index lesion with multiparametric MRI in prostate cancer patients[J]. J Magn Reson Imaging, 2016, 45(3): 908-916. DOI: 10.1002/jmri.25391.
[19]
Yang DM, Kim HC, Kim SW, et al. Prostate cancer: correlation of intravoxel incoherent motion MR parameters with Gleason score[J]. Clinical Imaging, 2016, 40(3): 445-450. DOI: 10.1016/j.clinimag.2016.01.001.
[20]
Zhang YD, Wang Q, Wu CJ, et al. Thehistogram analysis of diffusion-weighted intravoxel incoherent motion (IVIM) imaging for differentiating the gleason grade of prostate carcinoma[J]. Eur Radiol, 2015, 25(4): 994-1004. DOI: 10.1007/s00330-014-3511-4.
[21]
Sorace AG, Elkassem AA, Galgano SJ, et al. Imaging for Response Assessment in Cancer Clinical Trials[J]. Semin Nucl Med, 2020, 50(6): 488-504. DOI: 10.1053/j.semnuclmed.2020.05.001.
[22]
Usuda K, Funazaki A, Maeda R, et al. Economic Benefits and Diagnostic Quality of Diffusion-Weighted Magnetic Resonance Imaging for Primary Lung Cancer[J]. Ann Thorac Cardiovasc Surg, 2017, 23(6): 275-280. DOI: 10.5761/atcs.ra.17-00097.
[23]
Pang Y, Turkbey B, Bernardo M, et al. Intravoxel incoherent motion MR imaging for prostate cancer: an evaluation of perfusion fraction and diffusion coefficient derived from different b-value combinations[J]. Magn Reson Med, 2012, 69: 553–562. DOI: 10.1002/mrm.24277.
[24]
Lim HK, Jee WH, Jung JY, et al. Intravoxel incoherent motion diffusion-weighted MR imaging for differentiation of benign and malignant musculoskeletal tumours at 3T[J]. Br J Radiol, 2018, 91(1082): 20170636. DOI: 10.1259/bjr.20170636.
[25]
Döpfert J, Lemke A, Weidner A, et al. Investigation of prostate cancer using diffusion-weighted intravoxel incoherent motion imaging[J]. Magn Reson Imaging, 2011, 29(8): 1053-1058. DOI: 10.1016/j.mri.2011.06.001.
[26]
Thapa D, Wang P, Wu G, et al. A histogram analysis of diffusion and perfusion features of cervical cancer based on intravoxel incoherent motion magnetic resonance imaging[J]. Magn Reson Imaging, 2019, 55: 103-111. DOI: 10.1016/j.mri.2018.06.016.
[27]
Rofstad EK, Galappathi K, Mathiesen BS. Tumor interstitial fluid pressure-a link between tumor hypoxia, microvascular density, and lymph node metastasis[J]. Neoplasia, 2014, 16(7): 586-594. DOI: 10.1016/j.neo.2014.07.003.
[28]
Nilsen LB, Fangberget A, Geier O, et al. Quantitative analysis of diffusion-weighted magnetic resonance imaging in malignant Breast lesions using different b-value combinations[J]. Eur Radiol, 2013, 23(4): 1027-1033. DOI: 10.1007/s00330-012-2687-8.
[29]
Zhang Y, Kuang S, Shan Q et al. Can IVIM help predict HCC recurrence after hepatectomy?[J]. Eur Radiol, 2019, 29(11): 5791-5803. DOI: 10.1007/s00330-019-06180-1.
[30]
Peng Y, Jiang Y, Yang C, et al. Quantitative analysis of multiparametric prostate MR images: differentiation between prostate cancer and normal tissue and correlationwith Gleason score: a computer-aided diagnosis development study[J]. Radiology, 2013, 267(3): 787-796. DOI: 10.1148/radiol.13121454.
[31]
Min XD, Wang L, Feng ZY, et al. Prostate cancer: the correlation between apparent diffusion coefficient values obtained from high resolution diffusion-weighted imaging and Gleason scores[J]. Chin J Radiol, 2016, 49(3): 191-194. DOI: 10.3760/cma.j.issn.1005-1201.2015.03.008.
[32]
Riexinger A, Martin J, Wetscherek A, et al. An optimized b-value distribution for triexponential intravoxel incoherent motion (IVIM) in the liver[J]. Magn Reson Med, 2021, 85(4): 2095-2108. DOI: 10.1002/mrm.28582.

PREV Design and verification of flexible and elastic coil for the head of wearable MRI device
NEXT Diagnosis of cerebral venous thrombosis in children: Comparative study of 3D Brainview T1W black blood sequence and 3D CE-MRV sequence
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn