Share:
Share this content in WeChat
X
Review
Principle of amide proton transfer imaging and its research progress in glioma
LIU Xiaoyan  WANG Baojian  ZHANG Juan  NI Lin  MA Qianli  XIE Yuanzhong  LI Xiujuan 

Cite this article as: Liu XY, Wang BJ, Zhang J, et al. Principle of amide proton transfer imaging and its research progress in glioma[J]. Chin J Magn Reson Imaging, 2022, 13(2): 127-129. DOI:10.12015/issn.1674-8034.2022.02.031.


[Abstract] Glioma is the most common primary tumor of the central nervous system, high mortality and postoperative recurrence rate. At present, conventional magnetic resonance imaging technology can not meet the needs of clinical diagnosis and treatment decision-making. Amide proton transfer (APT) imaging can reflect the protein content and pH changes in cells at the molecular level by detecting the exchange rate of amide protons in free proteins and polypeptide chains in vivo with hydrogen protons in water, which can make up for the shortcomings of conventional magnetic resonance imaging technology. In recent years, APT imaging technology has been gradually applied in central nervous system diseases, especially in the early diagnosis, preoperative grading and curative effect evaluation of glioma. This paper mainly expounds the basic principle of APT imaging technology and its research progress in glioma.
[Keywords] glioma;amide proton transfer;chemical exchange saturation transfer;magnetic resonance imaging

LIU Xiaoyan1, 2   WANG Baojian1   ZHANG Juan3   NI Lin2   MA Qianli2   XIE Yuanzhong2   LI Xiujuan2*  

1 Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an 217000

2 Medical Imaging Center of Tai'an Central Hospital, Tai'an 217000

3 Department of Radiology, the Second Affiliated Hospital of Shandong First Medical University, Tai'an 217000

Li XJ, E-mail: myfly2006@126.com

Conflicts of interest   None.

Received  2021-11-26
Accepted  2022-01-24
DOI: 10.12015/issn.1674-8034.2022.02.031
Cite this article as: Liu XY, Wang BJ, Zhang J, et al. Principle of amide proton transfer imaging and its research progress in glioma[J]. Chin J Magn Reson Imaging, 2022, 13(2): 127-129. DOI:10.12015/issn.1674-8034.2022.02.031.

[1]
Pooladi M, Entezari M, Hashemi M. Characterization of G protein β subunit expression of human brain Glioma tumor[J]. Bratislavské lékarské listy, 2020, 121(12): 901. DOI: 10.4149/BLL_2020_148.
[2]
Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism[J]. Nat Rev Cancer, 2011, 11(2): 85-95. DOI: 10.1038/nrc2981.
[3]
Li J, Zhuang Z, Okamoto H, et al. Proteomic profiling distinguishes astrocytomas and identifies differential tumor markers[J]. Neurology, 2006, 66(5): 733-736. DOI: 10.1212/01.wnl.0000201270.90502.d0.
[4]
Zhou J, Payen J, Wilson DA, et al. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI[J]. Nature Medicine, 2003, 9(8): 1085-1090. DOI: 10.1038/nm907.
[5]
Zhou J, Tryggestad E, Wen Z, et al. Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides[J]. Nat Med, 2011, 17(1): 130-134. DOI: 10.1038/nm.2268.
[6]
Jokivarsi KT, Grohn HI, Grohn OH, et al. Proton transfer ratio, lactate, and intracellular pH in acute cerebral ischemia[J]. Magn Reson Med, 2007, 57(4): 647-653. DOI: 10.1002/mrm.21181.
[7]
Zheng Y, Wang XM. The application of amide proton transfer imaging in glioma[J]. Chin Clin Med Imaging, 2017, 28(10): 697-701. DOI: 10.3969/j.issn.1008-1062.2017.10.003.2017.10.003.
[8]
Kulanthaivelu K, Jabeen S, Saini J, et al. Amide proton transfer imaging for differentiation of tuberculomas from high-grade gliomas: Preliminary experience[J]. Neuroradiol J, 2021, 34(5): 440-448. DOI: 10.1177/19714009211002766.
[9]
Song Q, Zhang C, Chen X, et al. Comparing amide proton transfer imaging with dynamic susceptibility contrast-enhanced perfusion in predicting histological grades of gliomas: a meta-analysis[J]. Acta Radiol, 2020, 61(4): 549-557. DOI: 10.1177/0284185119871667.
[10]
Park JE, Kim HS, Park KJ, et al. Pre- and Posttreatment Glioma: Comparison of Amide Proton Transfer Imaging with MR Spectroscopy for Biomarkers of Tumor Proliferation[J]. Radiology, 2016, 278(2): 514-523. DOI: 10.1148/radiol.2015142979.
[11]
Choi YS, Ahn SS, Lee SK, et al. Amide proton transfer imaging to discriminate between low- and high-grade gliomas: added value to apparent diffusion coefficient and relative cerebral blood volume[J]. Eur Radiol, 2017, 27(8): 3181-3189. DOI: 10.1007/s00330-017-4732-0.
[12]
Su C, Jiang J, Liu C, et al. Comparison of amide proton transfer imaging and magnetization transfer imaging in revealing glioma grades and proliferative activities: a histogram analysis[J]. Neuroradiology, 2021, 63(5): 685-693. DOI: 10.1007/s00234-020-02547-0.
[13]
Griffiths JR. Are cancer cells acidic?[J]. Br J Cancer, 1991, 64(3): 425-427. DOI: 10.1038/bjc.1991.326.
[14]
Zhang X, Lin Y, Gillies RJ. Tumor pH and its measurement[J]. J Nucl Med, 2010, 51(8): 1167-1170. DOI: 10.2967/jnumed.109.068981.
[15]
Ray KJ, Simard MA, Larkin JR, et al. Tumor pH and Protein Concentration Contribute to the Signal of Amide Proton Transfer Magnetic Resonance Imaging[J]. Cancer Research, 2019, 79(7): 1343-1352. DOI: 10.1158/0008-5472.CAN-18-2168.
[16]
Togao O, Yoshiura T, Keupp J, et al. Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades[J]. Neuro-Oncology, 2014, 16(3): 441-448. DOI: 10.1093/neuonc/not158.
[17]
Surov A, Meyer HJ, Wienke A. Associations between apparent diffusion coefficient (ADC) and KI 67 in different tumors: a meta-analysis. Part 1: ADCmean[J]. Oncotarget, 2017, 8(43): 75434-75444. DOI: 10.18632/oncotarget.20406.
[18]
Chen Y, Li X, Song Y, et al. The diagnostic efficacy of amide proton transfer imaging in grading gliomas and predicting tumor proliferation[J]. Neuroreport, 2019, 30(2): 139-144. DOI: 10.1097/WNR.0000000000001174.
[19]
Park JE, Lee JY, Kim HS, et al. Amide proton transfer imaging seems to provide higher diagnostic performance in post-treatment high-grade gliomas than methionine positron emission tomography[J]. Eur Radiol, 2018, 28(8): 3285-3295. DOI: 10.1007/s00330-018-5341-2.
[20]
Park JE, Kim HS, Park KJ, et al. Pre- and Posttreatment Glioma: Comparison of Amide Proton Transfer Imaging with MR Spectroscopy for Biomarkers of Tumor Proliferation[J]. Radiology, 2016, 278(2): 514-523. DOI: 10.1148/radiol.2015142979.
[21]
Park YW, Ahn SS, Kim EH, et al. Differentiation of recurrent diffuse glioma from treatment-induced change using amide proton transfer imaging: incremental value to diffusion and perfusion parameters[J]. Neuroradiology, 2021, 63(3): 363-372. DOI: 10.1007/s00234-020-02542-5.
[22]
Jiang S, Eberhart CG, Lim M, et al. Identifying Recurrent Malignant Glioma after Treatment Using Amide Proton Transfer-Weighted MR Imaging: A Validation Study with Image-Guided Stereotactic Biopsy[J]. Clin Cancer Res, 2019, 25(2): 552-561. DOI: 10.1158/1078-0432.CCR-18-1233.
[23]
Park KJ, Kim HS, Park JE, et al. Added value of amide proton transfer imaging to conventional and perfusion MR imaging for evaluating the treatment response of newly diagnosed glioblastoma[J]. Eur Radiol, 2016, 26(12): 4390-4403. DOI: 10.1007/s00330-016-4261-2.
[24]
Chao BG, Gao Y, Yan WM. Application progress of PET/CT in postoperative radiotherapy of glioma[J]. Chin J Minim Invasive Neurosurg, 2021, 26(1): 43-45. DOI: 10.11850/j.issn.1009-122X.2021.01.013.
[25]
Sanson M, Marie Y, Paris S, et al. Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas[J]. J Clin Oncol, 2009, 27(25): 4150-4154. DOI: 10.1200/JCO.2009.21.9832.
[26]
Yan H, Parsons DW, Jin G, et al. IDH1 and IDH2 mutations in gliomas[J]. N Engl J Med, 2009, 360(8): 765-773. DOI: 10.1056/NEJMoa0808710.
[27]
Jiang S, Zou T, Eberhart CG, et al. Predicting IDH mutation status in grade II gliomas using amide proton transfer-weighted (APTw) MRI[J]. Magn Reson Med, 2017, 78(3): 1100-1109. DOI: 10.1002/mrm.26820.
[28]
Han Y, Wang W, Yang Y, et al. Amide Proton Transfer Imaging in Predicting Isocitrate Dehydrogenase 1 Mutation Status of Grade II/III Gliomas Based on Support Vector Machine[J]. Front Neurosci, 2020, 14: 144. DOI: 10.3389/fnins.2020.00144.
[29]
Kulanthaivelu K, Jabeen S, Saini J, et al. Amide proton transfer imaging for differentiation of tuberculomas from high-grade gliomas: Preliminary experience[J]. Neuroradiol J, 2021, 34(5): 440-448. DOI: 10.1177/19714009211002766.
[30]
Debnath A, Gupta RK, Singh A. Evaluating the Role of Amide Proton Transfer (APT)-Weighted Contrast, Optimized for Normalization and Region of Interest Selection, in Differentiation of Neoplastic and Infective Mass Lesions on 3T MRI[J]. Mol Imaging Biol, 2020, 22(2): 384-396. DOI: 10.1007/s11307-019-01382-x.
[31]
Jiang S, Yu H, Wang X, et al. Molecular MRI differentiation between primary central nervous system lymphomas and high-grade gliomas using endogenous protein-based amide proton transfer MR imaging at 3 Tesla[J]. Eur Radiol, 2016, 26(1): 64-71. DOI: 10.1007/s00330-015-3805-1.
[32]
Yu H, Wang XL, Jiang SS, et al. A preliminary study on identification of the brain metastatic tumors and the high-grade neuroepithelial tumors with amide proton transfer magnetic resonance imaging. Chin J Neurosurg, 2015, 31(10): 1042-1046. DOI: 10.3760/cmaj.issn1001-2346.2015.10.020.

PREV New progress in imaging evaluation of intracranial atherosclerosis
NEXT Research progress of intelligent image prediction of MGMT methylation status in high-grade glioma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn