Share:
Share this content in WeChat
X
Review
The application of cardiovascular magnetic resonance in prognosis evaluation and risk stratification in hypertrophic cardiomyopathy
FENG Xinyi  ZHANG Tianyue  FENG Yuling  WU Xingqiang  LI Chunping  LI Rui 

Cite this article as: Feng XY, Zhang TY, Feng YL, et al. The application of cardiovascular magnetic resonance in prognosis evaluation and risk stratification in hypertrophic cardiomyopathy[J]. Chin J Magn Reson Imaging, 2022, 13(2): 137-140. DOI:10.12015/issn.1674-8034.2022.02.034.


[Abstract] Hypertrophic cardiomyopathy (HCM) is the most common monogenic idiopathic cardiomyopathy, which also the predominate cause of sudden death in young adults. Characterized by multi-parameter and multi-modal image, cardiovascular magnetic resonance (CMR) could evaluate the degree of cardiac involvement from multiple aspects in HCM patients, thus provide more valuable information for risk stratification and prognosis assessment. This article reviews the application of CMR in risk stratification and prognosis assessment of HCM patients, especially in histological imaging.
[Keywords] hypertrophic cardiomyopathy;cardiovascular magnetic resonance;magnetic resonance imaging;prognosis;risk stratification

FENG Xinyi   ZHANG Tianyue   FENG Yuling   WU Xingqiang   LI Chunping   LI Rui*  

Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637007, China

Li R, E-mail: lirui_imag@nsmc.edu.cn

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 81801674); Sichuan Science and Technology Program (No. 2021YJ0242); Nanchong City Level Science and Technology Plan Project (No. 19SXHZ0114).
Received  2021-10-08
Accepted  2022-02-07
DOI: 10.12015/issn.1674-8034.2022.02.034
Cite this article as: Feng XY, Zhang TY, Feng YL, et al. The application of cardiovascular magnetic resonance in prognosis evaluation and risk stratification in hypertrophic cardiomyopathy[J]. Chin J Magn Reson Imaging, 2022, 13(2): 137-140. DOI:10.12015/issn.1674-8034.2022.02.034.

[1]
Elliott PM, Anastasakis A, Borger MA, et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC)[J]. Eur Heart J, 2014, 35(39): 2733-2779. DOI: 10.1093/eurheartj/ehu284.
[2]
Rowin EJ, Maron BJ, Romashko M, et al. Impact of Effective Management Strategies on Patients With the Most Extreme Phenotypic Expression of Hypertrophic Cardiomyopathy[J]. Am J Cardiol, 2019, 124(1): 113-121. DOI: 10.1016/j.amjcard.2019.04.002.
[3]
Garg L, Gupta M, Sabzwari SRA, et al. Atrial fibrillation in hypertrophic cardiomyopathy: prevalence, clinical impact, and management[J]. Heart Fail Rev, 2019, 24(2): 189-197. DOI: 10.1007/s10741-018-9752-6.
[4]
Maron BJ, Haas TS, Maron MS, et al. Left atrial remodeling in hypertrophic cardiomyopathy and susceptibility markers for atrial fibrillation identified by cardiovascular magnetic resonance[J]. Am J Cardiol, 2014, 113(8): 1394-1400. DOI: 10.1016/j.amjcard.2013.12.045.
[5]
Yang K, Song YY, Chen XY, et al. Apical hypertrophic cardiomyopathy with left ventricular apical aneurysm: prevalence, cardiac magnetic resonance characteristics, and prognosis[J]. Eur Heart J Cardiovasc Imaging, 2020, 21(12): 1341-1350. DOI: 10.1093/ehjci/jeaa246.
[6]
Rowin EJ, Maron BJ, Haas TS, et al. Hypertrophic Cardiomyopathy With Left Ventricular Apical Aneurysm: Implications for Risk Stratification and Management[J]. J Am Coll Cardiol, 2017, 69(7): 761-773. DOI: 10.1016/j.jacc.2016.11.063.
[7]
Keramida K, Lazaros G, Nihoyannopoulos P. Right ventricular involvement in hypertrophic cardiomyopathy: Patterns and implications[J]. Hellenic J Cardiol, 2020, 61(1): 3-8. DOI: 10.1016/j.hjc.2018.11.009.
[8]
Maron MS, Hauser TH, Dubrow E, et al. Right ventricular involvement in hypertrophic cardiomyopath[J]. Am J Cardiol, 2007, 100(8): 1293-1298. DOI: 10.1016/j.amjcard.2007.05.061.
[9]
Śpiewak M, Kłopotowski M, Mazurkiewicz Ł, et al. Predictors of right ventricular function and size in patients with hypertrophic cardiomyopathy[J]. Sci Rep, 2020, 10(1): 21054. DOI: 10.1038/s41598-020-78245-x.
[10]
Maron BJ. Clinical Course and Management of Hypertrophic Cardiomyopathy[J]. N Engl J Med, 2018, 379(7): 655-668. DOI: 10.1056/NEJMra1710575.
[11]
Shimada YJ, Hoeger CW, Latif F, et al. Myocardial Contraction Fraction Predicts Cardiovascular Events in Patients With Hypertrophic Cardiomyopathy and Normal Ejection Fraction[J]. J Card Fail, 2019, 25(6): 450-456. DOI: 10.1016/j.cardfail.2019.03.016.
[12]
Liao H, Wang Z, Zhao L, et al. Myocardial contraction fraction predicts mortality for patients with hypertrophic cardiomyopathy[J]. Sci Rep, 2020, 10(1): 17026. DOI: 10.1038/s41598-020-72712-1.
[13]
Arenja N, Fritz T, Andre F, et al. Myocardial contraction fraction derived from cardiovascular magnetic resonance cine images-reference values and performance in patients with heart failure and left ventricular hypertrophy[J]. Eur Heart J Cardiovasc Imaging, 2017, 18(12): 1414-1422. DOI: 10.1093/ehjci/jew324.
[14]
Desai MY, Mentias A, Alashi A, et al. LV Global Function Index Provides Incremental Prognostic Value Over LGE and LV GLS in HCM[J]. JACC Cardiovasc Imaging, 2020, 13(9): 2052-2054. DOI: 10.1016/j.jcmg.2020.03.023.
[15]
Huang S, Xu HY, Diao KY, et al. Left ventricular global function index by magnetic resonance imaging - a novel marker for differentiating cardiac amyloidosis from hypertrophic cardiomyopathy[J]. Sci Rep, 2020, 10(1): 4707. DOI: 10.1038/s41598-020-61608-9.
[16]
Gupta AN, Soulat G, Avery R, et al. 4D flow MRI left atrial kinetic energy in hypertrophic cardiomyopathy is associated with mitral regurgitation and left ventricular outflow tract obstruction[J]. Int J Cardiovasc Imaging, 2021, 37: 2755-2765. DOI: 10.1007/s10554-021-02167-6.
[17]
van Ooij P, Allen BD, Contaldi C, et al. 4D flow MRI and T1-Mapping: Assessment of altered cardiac hemodynamics and extracellular volume fraction in hypertrophic cardiomyopathy[J]. J Magn Reson Imaging, 2016, 43(1): 107-114. DOI: 10.1002/jmri.24962.
[18]
Kamp NJ, Chery G, Kosinski AS, et al. Risk stratification using late gadolinium enhancement on cardiac magnetic resonance imaging in patients with hypertrophic cardiomyopathy: A systematic review and meta-analysis[J]. Prog Cardiovasc Dis, 2021, 66: 10-16. DOI: 10.1016/j.pcad.2020.11.001.
[19]
Hen Y, Iguchi N, Utanohara Y, et al. Prognostic value of late gadolinium enhancement on cardiac magnetic resonance imaging in Japanese hypertrophic cardiomyopathy patients[J]. Circ J, 2014, 78(4): 929-37. DOI: 10.1253/circj.cj-13-0979.
[20]
Chan RH, Maron BJ, Olivotto I, et al. Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy[J]. Circulation, 2014, 130(6): 484-95. DOI: 10.1161/CIRCULATIONAHA.113.007094.
[21]
Weng Z, Yao J, Chan RH, et al. Prognostic Value of LGE-CMR in HCM: AA Meta-Analysis[J]. JACC Cardiovasc Imaging, 2016, 9(12): 1392-1402. DOI: 10.1016/j.jcmg.2016.02.031.
[22]
Greulich S, Seitz A, Herter D, et al. Long-term risk of sudden cardiac death in hypertrophic cardiomyopathy: a cardiac magnetic resonance outcome study[J]. Eur Heart J Cardiovasc Imaging, 2021, 22(7): 732-741. DOI: 10.1093/ehjci/jeaa423.
[23]
Liu J, Zhao S, Yu S, et al. Patterns of Replacement Fibrosis in Hypertrophic Cardiomyopathy. Radiology, 2022, 302(2): 298-306. DOI: 10.1148/radiol.2021210914.
[24]
Raman B, Ariga R, Spartera M, et al. Progression of myocardial fibrosis in hypertrophic cardiomyopathy: mechanisms and clinical implications[J]. Eur Heart J Cardiovasc Imaging, 2019, 20(2): 157-167. DOI: 10.1093/ehjci/jey135.
[25]
Dohy Z, Szabo L, Toth A, et al. Prognostic significance of cardiac magnetic resonance-based markers in patients with hypertrophic cardiomyopathy[J]. Int J Cardiovasc Imaging, 2021, 37(6): 2027-2036. DOI: 10.1007/s10554-021-02165-8.
[26]
Barbosa AR, Almeida J, Guerreiro C, et al. Late gadolinium enhancement location assessed by magnetic resonance and arrhythmogenic risk in hypertrophic cardiomyopathy[J]. Rev Port Cardiol (Engl Ed), 2020, 39(11): 615-621. DOI: 10.1016/j.repc.2019.12.009.
[27]
Li X, Lai L, Luo R, et al. The Clinical Prognosis of Presence and Location of Late Gadolinium Enhancement by Cardiac Magnetic Resonance Imaging in Patients with Hypertrophic Cardiomyopathy: a Single-Center Cohort Study[J]. J Cardiovasc Transl Res, 2021, 14: 1001-1016. DOI: 10.1007/s12265-021-10107-x.
[28]
Klopotowski M, Kukula K, Malek LA, et al. The value of cardiac magnetic resonance and distribution of late gadolinium enhancement for risk stratification of sudden cardiac death in patients with hypertrophic cardiomyopathy[J]. J Cardiol, 2016, 68(1): 49-56. DOI: 10.1016/j.jjcc.2015.07.020.
[29]
Cheng S, Fang M, Cui C, et al. LGE-CMR-derived texture features reflect poor prognosis in hypertrophic cardiomyopathy patients with systolic dysfunction: preliminary results. Eur Radiol, 2018, 28(11): 4615-4624. DOI: 10.1007/s00330-018-5391-5.
[30]
Gac P, Kedzierski B, Truszkiewicz K, et al. T1-mapping and extracellular volume in patients with hypertrophic cardiomyopathy without focal myocardial injury in late gadolinium enhancement sequence[J]. Eur Heart J-Card Img, 2021, 22(Supplement_2): jeab090.115. DOI: 10.1093/EHJCI/JEAB090.115.
[31]
Li Y, Liu X, Yang F, et al. Prognostic value of myocardial extracellular volume fraction evaluation based on cardiac magnetic resonance T1 mapping with T1 long and short in hypertrophic cardiomyopathy[J]. Eur Radiol, 2021, 31(7): 4557-4567. DOI: 10.1007/s00330-020-07650-7.
[32]
Avanesov M, Münch J, Weinrich J, et al. Prediction of the estimated 5-year risk of sudden cardiac death and syncope or non-sustained ventricular tachycardia in patients with hypertrophic cardiomyopathy using late gadolinium enhancement and extracellular volume CMR[J]. Eur Radiol, 2017, 27(12): 5136-5145. DOI: 10.1007/s00330-017-4869-x.
[33]
Li JC, Cheng LQ, Chen YD, et al. Magnetic resonance imaging measurement and clinical application of myocardial strain[J]. Chin J Med Imag, 2017, 25(4): 307-309, 313. DOI: 10.3969/j.issn.1005-5185.2017.04.017.
[34]
Lee HJ, Kim HK, Lee SC, et al. Supplementary role of left ventricular global longitudinal strain for predicting sudden cardiac death in hypertrophic cardiomyopathy[J]. Eur Heart J-Card Img, 2021. DOI: 10.1093/ehjci/jeab187.
[35]
Hinojar R, Fernández-Golfín C, González-Gómez A, et al. Prognostic implications of global myocardial mechanics in hypertrophic cardiomyopathy by cardiovascular magnetic resonance feature tracking. Relations to left ventricular hypertrophy and fibrosis[J]. Int J Cardiol, 2017, 249: 467-472. DOI: 10.1016/j.ijcard.2017.07.087.
[36]
Wabich E, Dorniak K, Zienciuk-Krajka A, et al. Segmental longitudinal strain as the most accurate predictor of the patchy pattern late gadolinium enhancement in hypertrophic cardiomyopathy[J]. J Cardiol, 2021, 77(5): 475-481. DOI: 10.1016/j.jjcc.2020.11.004.
[37]
Li ZL, He S, Xia CC, et al. Global longitudinal diastolic strain rate as a novel marker for predicting adverse outcomes in hypertrophic cardiomyopathy by cardiac magnetic resonance tissue tracking[J]. Clin Radiol, 2021, 76(1): 78.e19-78.e25. DOI: 10.1016/j.crad.2020.08.019.
[38]
Yang F, Wang J, Li Y, et al. The prognostic value of biventricular long axis strain using standard cardiovascular magnetic resonance imaging in patients with hypertrophic cardiomyopathy[J]. Int J Cardiol, 2019, 294: 43-49. DOI: 10.1016/j.ijcard.2019.08.010.
[39]
Zhang N, Yang G, Gao Z, et al. Deep learning for diagnosis of chronic myocardial infarction on nonenhanced cardiac cine MRI[J]. Radiology, 2019, 291(3): 606-617. DOI: 10.1148/radiol.2019182304.

PREV Research progress of MRI technology in the diagnosis of parotid tumor
NEXT Application progress of intravoxel incoherent motion diffusion weighted imaging in lungs
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn