Share:
Share this content in WeChat
X
[Chinese] [PDF] 1391 44
Review
Research progress of preoperative prediction of microvascular invasion of hepatocellular carcinoma based on magnetic resonance imaging
HU Guangchao  ZHANG Qianqian  MAO Ning  LI Naixuan 

Cite this article as: Hu GC, Zhang QQ, Mao N, et al. Research progress of preoperative prediction of microvascular invasion of hepatocellular carcinoma based on magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2022, 13(2): 159-162. DOI:10.12015/issn.1674-8034.2022.02.040.


[Abstract] Hepatocellular carcinoma (HCC) is a common malignant tumor in the world, the primary treatment of HCC is surgical resection, but recurrence after surgical treatment is common, a large part of the reason is related to microvascular invasion. Therefore, looking for a non-invasive method to predict microvascular invasion before operation is of great significance for guiding surgical treatment, improving the prognosis and improving the survival rate of patients. Multi-sequence, multimodal magnetic resonance imaging(MRI) and MRI-based radiomics and deep learning technology are developing rapidly, which makes preoperative non-invasive prediction of microvascular invasion in hepatocellular carcinoma possible and highly promising. This paper mainly reviewed in this respect.
[Keywords] hepatocellular carcinoma;microvascular invasion;magnetic resonance imaging;radiomic;deep learning

HU Guangchao1   ZHANG Qianqian2   MAO Ning2   LI Naixuan3*  

1 School of Medical Imaging, Binzhou Medical University, Yantai 264000, China

2 Department of Radiology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai 264000, China

3 Department of Vascular Interventional Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264000, China

Li NX, E-mail: xuannaili@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Traditional Chinese Medicine Science and Technology Development Plan of Shandong Province (No. 2019-0501).
Received  2021-09-24
Accepted  2022-01-30
DOI: 10.12015/issn.1674-8034.2022.02.040
Cite this article as: Hu GC, Zhang QQ, Mao N, et al. Research progress of preoperative prediction of microvascular invasion of hepatocellular carcinoma based on magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2022, 13(2): 159-162. DOI:10.12015/issn.1674-8034.2022.02.040.

[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
Expert consensus on multidisciplinary diagnosis and treatment of precancerous lesions of hepatocellular carcinoma (2020 edition)[J]. J Clin Hepatol, 2020, 28(1): 14-20. DOI: 10.3760/cma.j.issn.1007-3418.2020.01.005.
[3]
National Health Commission of the People's Republic of China Medical Administration and Hospital Administration. Standardization for diagnosis and treatment of hepatocellular carcinoma (2019 edition)[J]. Chin J Dig Surg, 2020, 19(1): 1-20. DOI: 10.3760/cma.j.issn.1673-9752.2020.01.001.
[4]
Nuta, Shingaki N, Ida Y, et al. Irregular defects in hepatocellular carcinomas during the kupffer phase of contrast-enhanced ultrasonography with perfluorobutane microbubbles: pathological features and metastatic recurrence after surgical resection[J]. Ultrasound Med Biol, 2017, 43(9): 1829-1836. DOI: 10.1016/j.ultrasmedbio.2017.04.023.
[5]
Chou CT, Chen RC, Lee CW, et al. Prediction of microvascular invasion of hepatocellular carcinoma by pre-operative CT imaging[J]. Br J Radiol, 2012, 85(1014): 778-783. DOI: 10.1259/bjr/65897774.
[6]
Kim AY, Sinn DH, Jeong WK, et al. Hepatobiliary MRI as novel selection criteria in liver transplantation for hepatocellular carcinoma[J]. J Hepatol, 2018, 68(6): 1144-1152. DOI: 10.1016/j.jhep.2018.01.024.
[7]
Ariizumi S, Kitagawa K, Kotera Y, et al. A non-smooth tumor margin in the hepatobiliary phase of gadoxetic acid disodium (Gd-EOB-DTPA)-enhanced magnetic resonance imaging predicts microscopic portal vein invasion, intrahepatic metastasis, and early recurrence after hepatectomy in patients with hepatocellular carcinoma[J]. J Hepatobiliary Pancreat Sci, 2011, 18(4): 575-585. DOI: 10.1007/s00534-010-0369-y.
[8]
Lee S, Kim SH, Lee JE, et al. Preoperative gadoxetic acid-enhanced MRI for predicting microvascular invasion in patients with single hepatocellular carcinoma[J]. J Hepatol, 2017, 67(3): 526-534. DOI: 10.1016/j.jhep.2017.04.024.
[9]
Huang MQ, Liao B, Xu P, et al. Prediction of microvascular invasion in hepatocellular carcinoma: preoperative Gd-EOB-DTPA-dynamic enhanced MRI and histopathological correlation[J]. Contrast Media Mol Imaging, 2018, 2018: 9674565. DOI: 10.1155/2018/9674565.
[10]
Ryu T, Takami Y, Wada Y, et al. A clinical scoring system for predicting microvascular invasion in patients with hepatocellular carcinoma within the Milan criteria[J]. J Gastrointest Surg, 2019, 23(4): 779-787. DOI: 10.1007/s11605-019-04134-y.
[11]
Hong SB, Choi SH, Kim SY, et al. MRI features for predicting microvascular invasion of hepatocellular carcinoma: a systematic review and meta-analysis[J]. Liver Cancer, 2021, 10(2): 94-106. DOI: 10.1159/000513704.
[12]
Choi JY, Lee JM, Sirlin CB. CT and MR imaging diagnosis and staging of hepatocellular carcinoma: part Ⅱ. Extracellular agents, hepatobiliary agents, and ancillary imaging features[J]. Radiology, 2014, 273(1): 30-50. DOI: 10.1148/radiol.14132362.
[13]
Nakashima Y, Nakashima O, Tanaka M, et al. Portal vein invasion and intrahepatic micrometastasis in small hepatocellular carcinoma by gross type[J]. Hepatol Res, 2003, 26(2): 142-147. DOI: 10.1016/s1386-6346(03)00007-x.
[14]
Shirabe K, Kajiyama K, Abe T, et al. Predictors of microscopic portal vein invasion by hepatocellular carcinoma: measurement of portal perfusion defect area ratio[J]. J Gastroenterol Hepatol, 2009, 24(8): 1431-1436. DOI: 10.1111/j.1440-1746.2009.05847.x.
[15]
Jing MY, Cao YT, Deng J, et al. The value of minimum apparent diffusion coefficient in evaluating the invasiveness of hepatocellular carcinoma[J]. Chin J Magn Reson Imaging, 2021, 12(5): 16-20. DOI: 10.12015/issn.1674-8034.2021.05.004.
[16]
Zhao JK, Li XB, Zhang K, et al. Prediction of microvascular invasion of hepatocellular carcinoma with preoperative diffusion-weighted imaging: a comparison of mean and minimum apparent diffusion coefficient values[J]. Medicine (Baltimore), 2017, 96(33): e7754. DOI: 10.1097/MD.0000000000007754.
[17]
Surov A, Pech M, Omari J, et al. Diffusion-weighted imaging reflects tumor grading and microvascular invasion in hepatocellular carcinoma[J]. Liver Cancer, 2021, 10(1): 10-24. DOI: 10.1159/000511384.
[18]
Yang C, Wang HQ, Tang YB, et al. ADC similarity predicts microvascular invasion of bifocal hepatocellular carcinoma[J]. Abdom Radiol (NY), 2018, 43(9): 2295-2302. DOI: 10.1007/s00261-018-1469-4.
[19]
Iima M, le Bihan D. Clinical intravoxel incoherent motion and diffusion MR imaging: past, present, and future[J]. Radiology, 2016, 278(1): 13-32. DOI: 10.1148/radiol.2015150244.
[20]
Wei Y, Huang ZX, Tang HH, et al. IVIM improves preoperative assessment of microvascular invasion in HCC[J]. Eur Radiol, 2019, 29(10): 5403-5414. DOI: 10.1007/s00330-019-06088-w.
[21]
Zhao W, Liu WG, Liu HP, et al. Preoperative prediction of microvascular invasion of hepatocellular carcinoma with IVIM diffusion-weighted MR imaging and Gd-EOB-DTPA-enhanced MR imaging[J]. PLoS One, 2018, 13(5): e0197488. DOI: 10.1371/journal.pone.0197488.
[22]
Li HX, Zhang J, Zheng ZY, et al. Preoperative histogram analysis of intravoxel incoherent motion (IVIM) for predicting microvascular invasion in patients with single hepatocellular carcinoma[J]. Eur J Radiol, 2018, 105: 65-71. DOI: 10.1016/j.ejrad.2018.05.032.
[23]
Wang WT, Yang L, Yang ZX, et al. Assessment of microvascular invasion of hepatocellular carcinoma with diffusion kurtosis imaging[J]. Radiology, 2018, 286(2): 571-580. DOI: 10.1148/radiol.2017170515.
[24]
Cao LK, Chen J, Duan T, et al. Diffusion kurtosis imaging (DKI) of hepatocellular carcinoma: correlation with microvascular invasion and histologic grade[J]. Quant Imaging Med Surg, 2019, 9(4): 590-602. DOI: 10.21037/qims.2019.02.14.
[25]
Zhang L, Yu X, Wei WX, et al. Prediction of HCC microvascular invasion with gadobenate-enhanced MRI: correlation with pathology[J]. Eur Radiol, 2020, 30(10): 5327-5336. DOI: 10.1007/s00330-020-06895-6.
[26]
Wang XX, Zhang ZQ, Zhou XY, et al. Computational quantitative measures of Gd-EOB-DTPA enhanced MRI hepatobiliary phase images can predict microvascular invasion of small HCC[J]. Eur J Radiol, 2020, 133: 109361. DOI: 10.1016/j.ejrad.2020.109361.
[27]
Jajamovich GH, Huang W, Besa C, et al. DCE-MRI of hepatocellular carcinoma: perfusion quantification with Tofts model versus shutter-speed model—initial experience[J]. Magn Reson Mater Phys Biol Med, 2016, 29(1): 49-58. DOI: 10.1007/s10334-015-0513-4.
[28]
Ahn SY, Lee JM, Joo I, et al. Prediction of microvascular invasion of hepatocellular carcinoma using gadoxetic acid-enhanced MR and (18)F-FDG PET/CT[J]. Abdom Imaging, 2015, 40(4): 843-851. DOI: 10.1007/s00261-014-0256-0.
[29]
Kim KA, Kim MJ, Jeon HM, et al. Prediction of microvascular invasion of hepatocellular carcinoma: usefulness of peritumoral hypointensity seen on gadoxetate disodium-enhanced hepatobiliary phase images[J]. J Magn Reson Imaging, 2012, 35(3): 629-634. DOI: 10.1002/jmri.22876.
[30]
Song Q, Ma J, Rao SX, et al. Study of microcirculation function status of HCC using 3D-DCE-MRI perfusion Tofts model[J]. Radiol Pract, 2013, 28(6): 662-665. DOI: 10.13609/j.cnki.1000-0313.2013.06.012.
[31]
Chen J, Chen CY, Xia CC, et al. Quantitative free-breathing dynamic contrast-enhanced MRI in hepatocellular carcinoma using gadoxetic acid: correlations with Ki67 proliferation status, histological grades, and microvascular density[J]. Abdom Radiol (NY), 2018, 43(6): 1393-1403. DOI: 10.1007/s00261-017-1320-3.
[32]
Kumar V, Gu YH, Basu S, et al. Radiomics: the process and the challenges[J]. Magn Reson Imaging, 2012, 30(9): 1234-1248. DOI: 10.1016/j.mri.2012.06.010.
[33]
Meng XP, Wang YC, Zhou JY, et al. Comparison of MRI and CT for the prediction of microvascular invasion in solitary hepatocellular carcinoma based on a non-radiomics and radiomics method: which imaging modality is better?[J]. J Magn Reson Imaging, 2021, 54(2): 526-536. DOI: 10.1002/jmri.27575.
[34]
Dai HJ, Lu MH, Huang BS, et al. Considerable effects of imaging sequences, feature extraction, feature selection, and classifiers on radiomics-based prediction of microvascular invasion in hepatocellular carcinoma using magnetic resonance imaging[J]. Quant Imaging Med Surg, 2021, 11(5): 1836-1853. DOI: 10.21037/qims-20-218.
[35]
Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis[J]. Med Image Anal, 2017, 42: 60-88. DOI: 10.1016/j.media.2017.07.005.
[36]
Wang GY, Jian WW, Cen XP, et al. Prediction of microvascular invasion of hepatocellular carcinoma based on preoperative diffusion-weighted MR using deep learning[J]. Acad Radiol, 2021, 28(Suppl 1): S118-S127. DOI: 10.1016/j.acra.2020.11.014.
[37]
Zhang YX, Lv XF, Qiu JL, et al. Deep learning with 3D convolutional neural network for noninvasive prediction of microvascular invasion in hepatocellular carcinoma[J]. J Magn Reson Imaging, 2021, 54(1): 134-143. DOI: 10.1002/jmri.27538.
[38]
Jhaveri KS, Cleary SP, Fischer S, et al. Blood oxygen level-dependent liver MRI: can it predict microvascular invasion in HCC?[J]. J Magn Reson Imaging, 2013, 37(3): 692-699. DOI: 10.1002/jmri.23858.
[39]
Chen W, DelProposto Z, Liu W, et al. Susceptibility-weighted imaging for the noncontrast evaluation of hepatocellular carcinoma: a prospective study with histopathologic correlation[J]. PLoS One, 2014, 9(5): e98303. DOI: 10.1371/journal.pone.0098303.
[40]
Chang SX, Li GW, Chen Y, et al. Characterizing venous vasculatures of hepatocellular carcinoma using a multi-breath-hold two-dimensional susceptibility weighted imaging[J]. PLoS One, 2013, 8(6): e65895. DOI: 10.1371/journal.pone.0065895.

PREV Research progress in predicting microvascular invasion of hepatocellular carcinoma by preoperative MRI
NEXT Progress in the application of ultrashort magnetic resonance echo time sequences
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn