Share:
Share this content in WeChat
X
Review
Progress in the application of ultrashort magnetic resonance echo time sequences
ZHANG Xuyang  YU Nan  ZHANG Xirong  JIA Yongjun  REN Ge  REN Zhanli  HE Taiping 

Cite this article as: Zhang XY, Yu N, Zhang XR, et al. Progress in the application of ultrashort magnetic resonance echo time sequences[J]. Chin J Magn Reson Imaging, 2022, 13(2): 163-166. DOI:10.12015/issn.1674-8034.2022.02.041.


[Abstract] Magnetic resonance imaging has good soft tissue resolution and no ionizing radiation, so it is widely used in many parts of the human body, but there are some substances with ultra-short T2 value in human body. such as bone cortex, tendons, ligaments, lung tissue and so on, this kind of tissue cannot be imaged by conventional magnetic resonance imaging sequence. With the development of magnetic resonance imaging technology, the application of Magnetic Resonance Imaging Ultrashort echo time (Magnetic Resonance Imaging Ultrashort echo time. MRI-UTE) sequence makes short T2 tissue imaging possible. The research progress in the application of ultrashort echo time series in recent years was reviewed in this paper.
[Keywords] magnetic resonance imaging;ultrashort echo time series;short T2 tissue

ZHANG Xuyang1   YU Nan1, 2   ZHANG Xirong1, 2   JIA Yongjun2   REN Ge2   REN Zhanli2   HE Taiping1*  

1 Shaanxi University of Chinese Medicine, Xianyang 712046, China

2 Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712021, China

He TP, E-mail: htp89956@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Key Research and Development (R&D) Projects of Shaanxi Province (No. 2021ZDLSF04-10); Subject Innovation Team of Shaanxi University of Chinese Medicine (No. 2019-YS04).
Received  2021-08-02
Accepted  2021-12-28
DOI: 10.12015/issn.1674-8034.2022.02.041
Cite this article as: Zhang XY, Yu N, Zhang XR, et al. Progress in the application of ultrashort magnetic resonance echo time sequences[J]. Chin J Magn Reson Imaging, 2022, 13(2): 163-166. DOI:10.12015/issn.1674-8034.2022.02.041.

[1]
DENG WT, LIANG SB. The Principle of Nuclear Magnetic Resonance and Research on Typical Failure Maintenance[J]. Chin Plan Engineering, 2020(6): 45-46. DOI: 10.3969/j.issn.1671-0711.2020.06.033.
[2]
Sajib SZK, Katoch N, Kim HJ, et al. Software Toolbox for Low-Frequency Conductivity and Current Density Imaging Using MRI[J]. IEEE Trans Biomed Eng, 2017, 64(11): 2505-2514. DOI: 10.1109/TBME.2017.2732502.
[3]
Jerban S, Ma Y, Wei Z, et al. Quantitative Magnetic Resonance Imaging of Cortical and Trabecular Bone[J]. Semin Musculoskelet Radiol. 2020, 24(4): 386-401. DOI: 10.1055/s-0040-1710355.
[4]
Majumdar SR, McAlister FA, Johnson JA, et al. Comparing Strategies Targeting Osteoporosis to Prevent Fractures After an Upper Extremity Fracture (C-STOP Trial): A Randomized Controlled Trial[J]. J Bone Miner Res, 2018, 33(12): 2114-2121. DOI: 10.1002/jbmr.3557.
[5]
Wei Z, Jang H, Bydder GM, et al. Fast T1 measurement of cortical bone using 3D UTE actual flip angle imaging and single-TR acquisition (3D UTE-AFI-STR)[J]. Magn Reson Med, 2021, 85(6): 3290-3298. DOI: 10.1002/mrm.28655.
[6]
Sollmann N, Löffler MT, Kronthaler S, et al. MRI-Based Quantitative Osteoporosis Imaging at the Spine and Femur[J]. J Magn Reson Imaging. 2021, 54(1):12-35. DOI: 10.1002/jmri.27260.
[7]
Horch RA, Nyman JS, Gochberg DF, et al. Characterization of 1H NMR signal in human cortical bone for magnetic resonance imaging[J]. Magn Reson Med, 2010, 64(3): 680-687. DOI: 10.1002/mrm.22459.
[8]
LIU JG, ZHANG J. Progress in the application of ultrashort echo time magnetic resonance imaging in musculoskeletal system[J]. Chin J of Magn Reson Imaging, 2020, 11(2): 158-160. DOI: 10.12015/issn.1674-8034.2020.02.017.
[9]
Lu X, Jerban S, Wan L, et al. Three-dimensional ultrashort echo time imaging with tricomponent analysis for human cortical bone[J]. Magn Reson Med, 2019, 82(1): 348-355. DOI: 10.1002/mrm.27718.
[10]
Wan L, Zhao W, Ma Y, et al. Fast quantitative 3D ultrashort echo time MRI of cortical bone using extended cones sampling[J]. Magn Reson Med, 2019, 82(1): 225-236. DOI: 10.1002/mrm.27715.
[11]
Jerban S, Ma Y, Li L, et al. Volumetric mapping of bound and pore water as well as collagen protons in cortical bone using 3D ultrashort echo time cones MR imaging techniques[J]. Bone, 2019, 127(5): 120-128. DOI: 10.1016/j.bone.2019.05.038.
[12]
Wu M, Ma YJ, Kasibhatla A, et al. Convincing evidence for magic angle less-sensitive quantitative T1ρ imaging of articular cartilage using the 3D ultrashort echo time cones adiabatic T1ρ (3D UTE cones-AdiabT1ρ) sequence[J]. Magn Reson Med, 2020, 84(5): 2551-2560. DOI: 10.1002/mrm.28317.
[13]
Li C, Magland JF, Zhao X, et al. Selective in vivo bone imaging with long-T2 suppressed PETRA MRI[J]. Magn Reson Med, 2017, 77(3): 989-997. DOI: 10.1002/mrm.26178.
[14]
Lee YH, Suh JS, Grodzki D. Ultrashort echo (UTE) versus pointwise encoding time reduction with radial acquisition (PETRA) sequences at 3 Tesla for knee meniscus: A comparative study[J]. Magn Reson Imaging, 2016, 34(2): 75-80. DOI: 10.1016/j.mri.2015.09.003.
[15]
Bae WC, Dwek JR, Znamirowski R, et al. Ultrashort echo time MR imaging of osteochondral junction of the knee at 3T: identification of anatomic structures contributing to signal intensity[J]. Radiology, 2010, 254(3): 837-845. DOI: 10.1148/radiol.09081743.
[16]
Zhou Q, Li SL, Ma YJ, et al. Detection of Repair of the Zone of Calcified Cartilage with Osteoarthritis through Mesenchymal Stem Cells by Ultrashort Echo Time Magnetic Resonance Imaging[J]. Chin Med J (Engl). 2018, 131(9): 1092-1098. DOI: 10.4103/0366-6999.224725.
[17]
Chang EY, Du J, Chung CB. UTE imaging in the musculoskeletal system[J]. J Magn Reson Imaging, 2015, 41(4): 870-883. DOI: 10.1002/jmri.24713.
[18]
Pauli C, Bae WC, Lee M, et al. Ultrashort-echo time MR imaging of the patella with bicomponent analysis: correlation with histopathologic and polarized light microscopic findings[J]. Radiology, 2012, 264(2): 484-493. DOI: 10.1148/radiol.12111883.
[19]
Yang J, Shao H, Ma Y, et al. Quantitative ultrashort echo time magnetization transfer (UTE-MT) for diagnosis of early cartilage degeneration: comparison with UTE-T2* and T2 mapping[J]. Quant Imaging Med Surg, 2020, 10(1): 171-183. DOI: 10.21037/qims.2019.12.04.
[20]
Gatehouse PD, He T, Hughes SP, et al. MR imaging of degenerative disc disease in the lumbar spine with ultrashort TE pulse sequences[J]. MAGMA, 2004, 16(4): 160-166. DOI: 10.1007/s10334-003-0021-9.
[21]
Berg-Johansen B, Han M, Fields AJ, et al. Cartilage Endplate Thickness Variation Measured by Ultrashort Echo-Time MRI Is Associated With Adjacent Disc Degeneration[J]. Spine (Phila Pa 1976), 2018, 43(10): E592-E600. DOI: 10.1097/BRS.0000000000002432.
[22]
Chen N, Lang N, Yuan HS. Ultrashort echo time MRI on cartilaginous endplates in lumbar spine[J]. Chin Med Imaging Technol, 2019, 35(6): 899-903. DOI: 10.13929/j.1003-3289.201812037.
[23]
Wang J, Zha YF, Xing D, et al. 3D-ultrashort echo time sequence combine with T2* mapping in evaluation on correlation between cartilaginous endplate defects and intervertebral disc degeneration[J]. Chin Med Imaging Technol, 2015, 31(10): 1470-1474. DOI: 10.13929/j.1003-3289.2015.10.006.
[24]
Wielpütz MO, Triphan SMF, Ohno Y, et al. Outracing Lung Signal Decay - Potential of Ultrashort Echo Time MRI[J]. Rofo, 2019, 191(5): 415-423. DOI: 10.1055/a-0715-2246.
[25]
Hou QR, Zhong YM. Application of new MRI technology in lung and airway diseases[J]. Int J Med Radiol, 2017, 40(2): 157-160. DOI: 10.19300/j.2017.Z4397.
[26]
Zha W, Kruger SJ, Johnson KM, et al. Pulmonary ventilation imaging in asthma and cystic fibrosis using oxygen-enhanced 3D radial ultrashort echo time MRI[J]. J Magn Reson Imaging, 2018, 47(5): 1287-1297. DOI: 10.1002/jmri.25877.
[27]
Xia Y, Guan Y, Liu SY, et al. The Preliminary Application of Ultra-Short Echo Time (UTE) MR Pulmonary Imaging in COPD[J]. J Clin Radiol, 2018, 37(3): 401-405. DOI: 10.13437/j.cnki.jcr.2018.03.010.
[28]
Ohno Y, Koyama H, Yoshikawa T, et al. Pulmonary high-resolution ultrashort TE MR imaging: Comparison with thin-section standard- and low-dose computed tomography for the assessment of pulmonary parenchyma diseases[J]. J Magn Reson Imaging, 2016, 43(2): 512-532. DOI: 10.1002/jmri.25008.
[29]
Dewes P, Frellesen C, Al-Butmeh F, et al. Comparative evaluation of non-contrast CAIPIRINHA-VIBE 3T-MRI and multidetector CT for detection of pulmonary nodules: In vivo evaluation of diagnostic accuracy and image quality[J]. Eur J Radiol, 2016, 85(1): 193-198. DOI: 10.1016/j.ejrad.2015.11.020.
[30]
Burris NS, Johnson KM, Larson PE, et al. Detection of Small Pulmonary Nodules with Ultrashort Echo Time Sequences in Oncology Patients by Using a PET/MR System[J]. Radiology, 2016, 278(1): 239-246. DOI: 10.1148/radiol.2015150489.
[31]
Zhu X, Chan M, Lustig M, et al. Iterative motion-compensation reconstruction ultra-short TE (iMoCo UTE) for high-resolution free-breathing pulmonary MRI[J]. Magn Reson Med, 2020, 83(4): 1208-1221. DOI: 10.1002/mrm.27998.
[32]
Hysinger EB, Bates AJ, Higano NS, et al. Ultrashort Echo-Time MRI for the Assessment of Tracheomalacia in Neonates[J]. Chest, 2020, 157(3): 595-602. DOI: 10.1016/j.chest.2019.11.034.
[33]
Károlyi M, Seifarth H, Liew G, et al. Classification of coronary atherosclerotic plaques ex vivo with T1, T2, and ultrashort echo time CMR[J]. JACC Cardiovasc Imaging, 2013, 6(4): 466-474. DOI: 10.1016/j.jcmg.2012.09.015.
[34]
Fabiano S, Mancino S, Stefanini M, et al. High-resolution multicontrast-weighted MR imaging from human carotid endarterectomy specimens to assess carotid plaque components[J]. Eur Radiol, 2008, 18(12): 2912-2921. DOI: 10.1007/s00330-008-1091-x.
[35]
Schuijf JD, Ambale-Venkatesh B, Kassai Y, et al. Cardiovascular ultrashort echo time to map fibrosis-promises and challenges[J]. Br J Radiol, 2019, 92(1103): 20190465. DOI: 10.1259/bjr.20190465.
[36]
Hoerr V, Nagelmann N, Nauerth A, et al. Cardiac-respiratory self-gated cine ultra-short echo time (UTE) cardiovascular magnetic resonance for assessment of functional cardiac parameters at high magnetic fields[J]. J Cardiovasc Magn Reson, 2013, 15(1): 59. DOI: 10.1186/1532-429X-15-59.
[37]
Du J, Sheth V, He Q, et al. Measurement of T1 of the ultrashort T2* components in white matter of the brain at 3T[J]. PLoS One. 2014, 9(8): e103296. DOI: 10.1371/journal.pone.0103296.
[38]
Ma YJ, Searleman AC, Jang H, et al. Whole-Brain Myelin Imaging Using 3D Double-Echo Sliding Inversion Recovery Ultrashort Echo Time (DESIRE UTE) MRI[J]. Radiology, 2020, 294(2): 362-374. DOI: 10.1148/radiol.2019190911.

PREV Research progress of preoperative prediction of microvascular invasion of hepatocellular carcinoma based on magnetic resonance imaging
NEXT Current state-of-the-art of MRI zero echo time technique
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn