Share:
Share this content in WeChat
X
Reviews
Research progress of cognitive impairment and neuroimaging in patients with spinal cord injury
WANG Jing  LI Lunlan  LIAO Chenxia  ZHANG Fan  GAO Xin 

Cite this article as: Wang J, Li LL, Liao CX, et al. Research progress of cognitive impairment and neuroimaging in patients with spinal cord injury[J]. Chin J Magn Reson Imaging, 2022, 13(3): 134-137. DOI:10.12015/issn.1674-8034.2022.03.033.


[Abstract] The incidence of cognitive impairment after spinal cord injury is high, but it may be ignored because it is not easy to detect. Moreover, the cognitive impairment after spinal cord injury is related to a variety of factors, among which the change of brain structure and function may actually be involved in the process of cognitive impairment, but the specific mechanism remains unclear. In recent years, scholars have used neuroimaging methods to study the changes of brain structure and function after spinal cord injury, in order to clarify the mechanism of cognitive impairment after spinal cord injury.This article reviews the incidence, clinical features,assessment methods,main influencing factors and neuroimaging changes of cognitive impairment in patients with spinal cord injury, aiming to provide reference for the prevention and intervention of cognitive impairment in patients with spinal cord injury.
[Keywords] spinal cord injury;cognitive impairment;neuroimaging;functional magnetic resonance imaging;research progress

WANG Jing   LI Lunlan*   LIAO Chenxia   ZHANG Fan   GAO Xin  

Department of Spinal Surgery, the First Affiliated Hospital, Anhui Medical University, Hefei 230022, China

Li LL, E-mail: lilunlan@aliyun.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Anhui Key Research and Development Projects (No. 201904a07020048); Natural Science Research Project of Universities in Anhui Province (No. KJ2020ZD18).
Received  2021-08-21
Accepted  2022-02-07
DOI: 10.12015/issn.1674-8034.2022.03.033
Cite this article as: Wang J, Li LL, Liao CX, et al. Research progress of cognitive impairment and neuroimaging in patients with spinal cord injury[J]. Chin J Magn Reson Imaging, 2022, 13(3): 134-137. DOI:10.12015/issn.1674-8034.2022.03.033.

[1]
Ropper AE, Ropper AH. Acute Spinal Cord Compression[J]. N Engl J Med, 2017, 376(14): 1358-1369. DOI: 10.1056/NEJMra1516539.
[2]
Yuan S, Shi Z, Cao F, et al. Epidemiological Features of Spinal Cord Injury in China: A Systematic Review[J]. Front Neurol, 2018, 9: 683. DOI: 10.3389/fneur.2018.00683.
[3]
Squair JW, White BA, Bravo GI, et al. The Economic Burden of Autonomic Dysreflexia during Hospitalization for Individuals with Spinal Cord Injury[J]. J Neurotrauma, 2016, 33(15): 1422-1427. DOI: 10.1089/neu.2015.4370.
[4]
Richardson A, Samaranayaka A, Sullivan M, et al. Secondary health conditions and disability among people with spinal cord injury: A prospective cohort study[J]. J Spinal Cord Med, 2021: 44(1):19-28. DOI: 10.1080/10790268.2019.1581392.
[5]
Wang Y, Xie H, Zhao X. Psychological morbidities and positive psychological outcomes in people with traumatic spinal cord injury in Mainland China[J]. Spinal Cord, 2018, 56(7): 704-711. DOI: 10.1038/s41393-017-0044-0.
[6]
Craig A, Nicholson Perry K, Guest R, et al. Adjustment following chronic spinal cord injury: Determining factors that contribute to social participation[J]. Br J Health Psychol, 2015, 20(4): 807-823. DOI: 10.1111/bjhp.12143.
[7]
Luo ZRX, Tan BT, Qin XX, et al. Spinal cord contusion induces cognitive impairment in adult rats[J]. Journal of Third Military Medical University, 2017, 39(1): 16-21. DOI: 10.16016/j.1000-5404.201607120.
[8]
Grabher P, Blaiotta C, Ashburner J, et al. Relationship between brainstem neurodegeneration and clinical impairment in traumatic spinal cord injury[J]. Neuroimage Clin, 2017, 15: 494-501. DOI: org/10.1016/j.nicl.2017.05.026.
[9]
van Middendorp JJ, Sanchez GM, Burridge AL. The Edwin Smith papyrus: a clinical reappraisal of the oldest known document on spinal injuries[J]. Eur Spine J, 2010, 19(11): 1815-1823. DOI: 10.1007/s00586-010-1523-6.
[10]
Davidoff G, Morris J, Roth E, et al. Cognitive dysfunction and mild closed head injury in traumatic spinal cord injury[J]. Arch Phys Med Rehabil, 1985, 66(8): 489-491.
[11]
Roth E, Davidoff G, Thomas P, et al. A controlled study of neuropsychological deficits in acute spinal cord injury patients[J]. Paraplegia, 1989, 27(6): 480-489. DOI: 10.1038/sc.1989.75.
[12]
Davidoff GN, Roth EJ, Haughton JS, et al. Cognitive dysfunction in spinal cord injury patients: sensitivity of the Functional Independence Measure subscales vs neuropsychologic assessment[J]. Arch Phys Med Rehabil, 1990, 71(5): 326-329.
[13]
Wilmot CB, Cope DN, Hall KM, et al. Occult head injury: Its incidence in spinal cord injury[J]. Arch Phys Med Rehabil, 1985, 66(4): 227-231. DOI: 10.1016/0003-9993(85)90148-0.
[14]
Borgaro SR, Kwasnica C, Cutter N, et al. The Use of the BNI Screen for Higher Cerebral Functions in Assessing Disorientation After Traumatic Brain Injury[J]. J Head Trauma Rehabil, 2003, 18(3): 284-291. DOI: 10.1097/00001199-200305000-00006.
[15]
Holtslag HR, van Beeck EF, Lindeman E, et al. Determinants of Long-Term Functional Consequences After Major Trauma[J]. J Trauma, 2007, 62(4): 919-927. DOI: 10.1097/01.ta.0000224124.47646.62.
[16]
Cohen ML, Tulsky DS, Holdnack JA, et al. Cognition among community-dwelling individuals with spinal cord injury[J]. Rehabil Psychol, 2017, 62(4): 425-434. DOI: 10.1037/rep0000140.
[17]
Craig A, Guest R, Tran Y, et al. Cognitive Impairment and Mood States after Spinal Cord Injury[J]. J Neurotrauma, 2017, 34(6): 1156-1163. DOI: 10.1089/neu.2016.4632.
[18]
Sachdeva R, Gao F, Chan CCH, et al. Cognitive function after spinal cord injury: A systematic review[J]. Neurology, 2018, 91(13): 611-621. DOI: 10.1212/WNL.0000000000006244.
[19]
Feng DL, Nan W, Wu YM, et al. Learning and Memory Impairment and Pathology in Hippocampus in Rats with Spinal Cord Injury[J]. Chin J Rehabil Theory Pract, 2015, 21(11): 1267-1272. DOI: 10.3969/j.issn.1006-9771.2015.11.007.
[20]
Luo ZRX. The study of spinal cord contusion injury induces cognitive impairment and relative mechanisms in adult rats[D]. Chongqing Medical University, 2017.
[21]
Chiaravalloti ND, Weber E, Wylie G, et al. The impact of level of injury on patterns of cognitive dysfunction in individuals with spinal cord injury[J]. J Spinal Cord Med, 2020, 43(5): 633-641. DOI: 10.1080/10790268.2019.1696076.
[22]
Carlozzi NE, Goodnight S, Umlauf A, et al. Motor-free composites from the National Institutes of Health Toolbox Cognition Battery (NIHTB-CB) for people with disabilities[J]. Rehabil Psychol, 2017, 62(4): 464-473. DOI: 10.1037/rep0000185.
[23]
Chiaravalloti ND, Weber E, Wylie G, et al. Patterns of cognitive deficits in persons with spinal cord injury as compared with both age-matched and older individuals without spinal cord injury[J]. J Spinal Cord Med, 2020, 43(1): 88-97. DOI: 10.1080/10790268.2018.1543103.
[24]
Phillips AA, Squair JW, Currie KD, et al. 2015 ParaPan American Games: Autonomic Function, But Not Physical Activity, Is Associated with Vascular-Cognitive Impairment in Spinal Cord Injury[J]. J Neurotrauma, 2017, 34(6): 1283-1288. DOI: 10.1089/neu.2016.4751.
[25]
Nightingale TE, Zheng MMZ, Sachdeva R, et al. Diverse cognitive impairment after spinal cord injury is associated with orthostatic hypotension symptom burden[J]. Physiol Behav, 2020, 213: 112742. DOI: 10.1016/j.physbeh.2019.112742.
[26]
Nightingale TE, Lim CAR, Sachdeva R, et al. Reliability of Cognitive Measures in Individuals With a Chronic Spinal Cord Injury[J]. PM&R, 2019, 11(12): 1278-1286. DOI: 10.1002/pmrj.12161.
[27]
Cohen MJ, Ament PA, Schandler SL, et al. Changes in the P300 component of the tactile event-related potential following spinal cord injury[J]. Spinal Cord, 1996, 34(2): 107-112. DOI: 10.1038/sc.1996.19.
[28]
Macciocchi SN, Bowman B, Coker J, et al. Effect of Co-Morbid Traumatic Brain Injury on Functional Outcome of Persons with Spinal Cord Injuries[J]. Am J Phys Med Rehabil, 2004, 83(1): 22-26. DOI: 10.1097/01.PHM.0000104661.86307.91.
[29]
Bradbury CL, Wodchis WP, Mikulis DJ, et al. Traumatic Brain Injury in Patients With Traumatic Spinal Cord Injury: Clinical and Economic Consequences[J]. Arch Phys Med Rehabil, 2008, 89(12): S77-S84. DOI: 10.1016/j.apmr.2008.07.008.
[30]
Nott M, Baguley I, Heriseanu R, et al. Effects of Concomitant Spinal Cord Injury and Brain Injury on Medical and Functional Outcomes and Community Participation[J]. Top Spinal Cord Inj Rehabil, 2014, 20(3): 225-235. DOI: 10.1310/sci2003-225.
[31]
Hess DW, Marwitz JH, Kreutzer JS. Neuropsychological impairments after spinal cord injury: A comparative study with mild traumatic brain injury[J]. Rehabil Psychol, 2003, 48(3): 151-156.
[32]
Mollayeva T, Hurst M, Escobar M, et al. Sex‐specific incident dementia in patients with central nervous system trauma[J]. Alzheimers Dement (Amst), 2019, 11(1): 355-367. DOI: 10.1016/j.dadm.2019.03.003.
[33]
Sachdeva R, Nightingale TE, Krassioukov AV. The Blood Pressure Pendulum following Spinal Cord Injury: Implications for Vascular Cognitive Impairment[J]. J Mol Sci, 2019, 20(10): 2464. DOI: 10.3390/ijms20102464.
[34]
Schembri R, Spong J, Graco M, et al. Neuropsychological Function in Patients With Acute Tetraplegia and Sleep Disordered Breathing[J]. Sleep, 2017, 40(2). DOI: 10.1093/sleep/zsw037.
[35]
Nardone R, Höller Y, Sebastianelli L, et al. Cortical morphometric changes after spinal cord injury[J]. Brain Res Bull, 2018, 137: 107-119. DOI: 10.1016/j.brainresbull.2017.11.013.
[36]
Kambi N, Halder P, Rajan R, et al. Large-scale reorganization of the somatosensory cortex following spinal cord injuries is due to brainstem plasticity[J]. Nat Commun, 2014, 5(1): 3602. DOI: 10.1038/ncomms4602.
[37]
Freund P, Weiskopf N, Ashburner J, et al. MRI investigation of the sensorimotor cortex and the corticospinal tract after acute spinal cord injury: a prospective longitudinal study[J]. Lancet Neurol, 2013, 12(9): 873-881. DOI: 10.1016/S1474-4422(13)70146-7.
[38]
Li X, Wang H, Tian Y, et al. Impaired White Matter Connections of the Limbic System Networks Associated with Impaired Emotional Memory in Alzheimer's Disease[J]. Front Aging Neurosci, 2016, 8: 250. DOI: 10.3389/fnagi.2016.00250.
[39]
Li XS, Wang HB, Yu YQ, et al. Resting-state fMRI study on changes of functional connectivity density in amnestic mild cognitive impairment and small vascular mild cognitive impairment[J]. Acta Universitatis Medicinalis Anhui, 2016, 51(7): 1046-1049. DOI: 10.19405/j.cnki.issn1000-1492.2016.07.029.
[40]
Zhou HM, Xu XY, Liu X, et al. Evaluation of gray and white matter volume of brain changes in patients with acute spinal cord injury using voxel-based morphometry[J]. Chin J Med Imaging Technol, 2018, 34(9): 1337-1341. DOI: 10.13929/j.1003-3289.201801012.
[41]
Shabani S, Kaushal M, Budde M, et al. Correlation of magnetic resonance diffusion tensor imaging parameters with American Spinal Injury Association score for prognostication and long-term outcomes[J]. Neurosurg Focus, 2019, 46(3): E2. DOI: 10.3171/2018.12.FOCUS18595.
[42]
Wang LB. Multimodality MRI study of brain structure and function in patients with cervical spondylotic mylelopathy[D]. China Medical University, 2018.
[43]
Wrigley PJ, Gustin SM, Macey PM, et al. Anatomical Changes in Human Motor Cortex and Motor Pathways following Complete Thoracic Spinal Cord Injury[J]. Cereb Cortex, 2008, 19(1): 224-232. DOI: 10.1093/cercor/bhn072.
[44]
Hou JM, Yan RB, Xiang ZM, et al. Brain sensorimotor system atrophy during the early stage of spinal cord injury in humans[J]. Neuroscience, 2014, 266: 208-215. DOI: 10.1016/j.neuroscience.2014.02.013.
[45]
Chen Q, Zheng WM, Chen X, et al. Brain Gray Matter Atrophy after Spinal Cord Injury: A Voxel-Based Morphometry Study[J]. Front Hum Neurosci, 2017, 11: 211. DOI: 10.3389/fnhum.2017.00211.
[46]
Guo Y, Gao F, Guo H, et al. Cortical morphometric changes associated with completeness, level, and duration of spinal cord injury in humans: A case-control study[J]. Brain Behav, 2021: e2037. DOI: 10.1002/brb3.2037.
[47]
Guo Y, Gao F, Liu Y, et al. White Matter Microstructure Alterations in Patients With Spinal Cord Injury Assessed by Diffusion Tensor Imaging[J]. Front Hum Neurosci, 2019, 13: 11. DOI: 10.3389/fnhum.2019.00011.
[48]
Jiang QJ, Li P, Liu K, et al. Study on the causal influences of executive control function regions[J]. Journal of Medical Imaging, 2013, 23(10): 1516-1520.
[49]
Liu XS, Chen L, Cheng RT, et al. Altered functional connectivity in patients with subcortical ischemic vascular disease: A resting-state fMRI study[J]. Brain Res, 2019, 1715: 126-133. DOI: 10.1016/j.brainres.2019.03.022.
[50]
Garcia-Alvarez L, Gomar JJ, Sousa A, et al. Breadth and depth of working memory and executive function compromises in mild cognitive impairment and their relationships to frontal lobe morphometry and functional competence[J]. Alzheimers Dement (Amst), 2019, 11(1): 170-179. DOI: 10.1016/j.dadm.2018.12.010.
[51]
El-Hage W, Cléry H, Andersson F, et al. Sex-specific effects of COMT Val158Met polymorphism on corpus callosum structure: A whole-brain diffusion-weighted imaging study[J]. Brain Behav, 2017, 7(9): e786. DOI: 10.1002/brb3.786.
[52]
Wang WZ, Tang S, Li C, et al. Specific Brain Morphometric Changes in Spinal Cord Injury: A Voxel-Based Meta-Analysis of White and Gray Matter Volume[J]. J Neurotrauma, 2019, 36(15): 2348-2357. DOI: 10.1089/neu.2018.6205.
[53]
Rolls ET. The orbitofrontal cortex and emotion in health and disease, including depression[J]. Neuropsychologia, 2019, 128: 14-43. DOI: 10.1016/j.neuropsychologia.2017.09.021.
[54]
Makovac E, Meeten F, Watson DR, et al. Alterations in Amygdala-Prefrontal Functional Connectivity Account for Excessive Worry and Autonomic Dysregulation in Generalized Anxiety Disorder[J]. Biol Psychiatry, 2016, 80(10): 786-795. DOI: 10.1016/j.biopsych.2015.10.013.
[55]
Jutzeler CR, Huber E, Callaghan MF, et al. Association of pain and CNS structural changes after spinal cord injury[J]. Sci Rep, 2016, 6(1): 18534. DOI: 10.1038/srep18534.
[56]
Zhu L, Wu G, Zhou X, et al. Altered Spontaneous Brain Activity in Patients with Acute Spinal Cord Injury Revealed by Resting-State Functional MRI[J]. PLoS One, 2015, 10(3): e118816. DOI: 10.1371/journal.pone.0118816.
[57]
Hou JM, Sun TS, Xiang ZM, et al. Alterations of resting-state regional and network-level neural function after acute spinal cord injury[J]. Neuroscience, 2014, 277: 446-454. DOI: 10.1016/j.neuroscience.2014.07.045
[58]
Hou JM, Xiang ZM, Yan RB, et al. Motor recovery at 6 months after admission is related to structural and functional reorganization of the spine and brain in patients with spinal cord injury[J]. Hum Brain Mapp, 2016, 37(6): 2195-2209. DOI: 10.1002/hbm.23163.
[59]
Hawasli AH, Rutlin J, Roland JL, et al. Spinal Cord Injury Disrupts Resting-State Networks in the Human Brain[J]. J Neurotrauma, 2018, 35(6): 864-873. DOI: 10.1089/neu.2017.5212.
[60]
Zhao Y. The alteration of cognition and brain functional connectivity in cervical spondylotic myelopathy patients: a resting-state fMRI study[D]. Tianjin Medical University, 2015.
[61]
Sachdeva R, Jia MY, Wang SX, et al. Vascular-Cognitive Impairment following High-Thoracic Spinal Cord Injury Is Associated with Structural and Functional Maladaptations in Cerebrovasculature[J]. J Neurotrauma, 2020, 37(18): 1963-1970. DOI: 10.1089/neu.2019.6913.

PREV Research progress of multimodal MRI of neuropsychiatric diseases based on linked independent component analysis
NEXT Advances in fMRI research in substance-related and addictive disorders
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn