Share:
Share this content in WeChat
X
Reviews
Research progress of cardiac magnetic resonance imaging in anthracycline-induced cardiotoxicity
TIAN Yaotian  WANG Cuiyan 

Cite this article as: Tian YT, Wang CY. Research progress of cardiac magnetic resonance imaging in anthracycline-induced cardiotoxicity[J]. Chin J Magn Reson Imaging, 2022, 13(3): 147-150. DOI:10.12015/issn.1674-8034.2022.03.036.


[Abstract] Anthracycline (ATC) is a commonly used chemotherapeutic drug with prominent cardiotoxic side effects. Anthracycline-induced cardiotoxicity (AIC) increases the cardiovascular morbidity and mortality of cancer survivors and seriously affects the quality of their life. Detecting and evaluating the AIC precisely can provide key information for clinical diagnosis and treatment, and reduce cardiovascular complications in cancer survivors. Cardiac magnetic resonance (CMR), as a noninvasive procedure, plays an important role in the baseline evaluation and follow-up of AIC due to its advantages of good repeatability, high spatial resolution, and multiple-parameter-imaging. Recently, series of new CMR technologies, including feature tracking (FT) and mapping, played an irreplaceable role in the early detection of AIC. Here we summarized the technical advantages and the progress of clinical application on CMR detecting and evaluating AIC.
[Keywords] cardiac magnetic resonance imaging;anthracycline;cardiotoxicity;chemotherapy;feature tracking;myocardial strain;myocardial tissue characteristics

TIAN Yaotian1   WANG Cuiyan2*  

1 Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China

2 Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China

Wang CY, E-mail: wcyzhang@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Natural Science Foundation of Shandong Province (No. ZR2019MH125).
Received  2021-08-05
Accepted  2022-02-17
DOI: 10.12015/issn.1674-8034.2022.03.036
Cite this article as: Tian YT, Wang CY. Research progress of cardiac magnetic resonance imaging in anthracycline-induced cardiotoxicity[J]. Chin J Magn Reson Imaging, 2022, 13(3): 147-150. DOI:10.12015/issn.1674-8034.2022.03.036.

[1]
Lotrionte M, Biondi-Zoccai G, Abbate A, et al. Review and meta-analysis of incidence and clinical predictors of anthracycline cardiotoxicity[J]. Am J Cardiol, 2013, 112(12): 1980-1984. DOI: 10.1016/j.amjcard.2013.08.026.
[2]
Bodai BI, Tuso P. Breast cancer survivorship: a comprehensive review of long-term medical issues and lifestyle recommendations[J]. Perm J, 2015, 19(2): 48-79. DOI: 10.7812/TPP/14-241.
[3]
Plana JC, Galderisi M, Barac A, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging[J]. J Am Soc Echocardiogr, 2014, 27(9): 911-939. DOI: 10.1016/j.echo.2014.07.012.
[4]
Zuo YP, Liu L, Cao LT. New advances in ultrasound evaluation of cardiotoxicities of anthracyclines in breast cancer patients. Chin J Med Ultrasound (Electronic Edition), 2019, 16(12): 976-980. DOI: 10.3877/cma.j.issn.1672-6448.2019.12.018.
[5]
Curigliano G, Cardinale D, Dent S, et al. Cardiotoxicity of anticancer treatments: Epidemiology, detection, and management[J]. CA Cancer J Clin, 2016, 66(4): 309-325. DOI: 10.3322/caac.21341.
[6]
Cardinale D, Colombo A, Lamantia G, et al. Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy[J]. J Am Coll Cardiol, 2010, 55(3): 213-220. DOI: 10.1016/j.jacc.2009.03.095.
[7]
Renu K, Abilash VG, Tirupathi P, et al. Molecular mechanism of doxorubicin-induced cardiomyopathy-An update[J]. Eur J Pharmacol, 2018, 818: 241-253. DOI: 10.1016/j.ejphar.2017.10.043.
[8]
Murabito A, Hirsch E, Ghigo A. Mechanisms of anthracycline-induced cardiotoxicity: Is mitochondrial dysfunction the answer?[J]. Front Cardiovasc Med, 2020, 7: 35. DOI: 10.3389/fcvm.2020.00035.
[9]
Lambert J, Lamacie M, Thampinathan B, et al. Variability in echocardiography and MRI for detection of cancer therapy cardiotoxicity[J]. Heart, 2020, 106(11): 817-823. DOI: 10.1136/heartjnl-2019-316297.
[10]
Halliday BP, Senior R, Pennell DJ. Assessing left ventricular systolic function: from ejection fraction to strain analysis[J]. Eur Heart J, 2020. DOI: 10.1093/eurheartj/ehaa587.
[11]
Melendez GC, Jordan JH, D'agostino RB, et al. Progressive 3-month increase in LV myocardial ECV after anthracycline-based chemotherapy[J]. JACC Cardiovasc Imaging, 2017, 10(6): 708-709. DOI: 10.1016/j.jcmg.2016.06.006.
[12]
Ferreira De Souza T, Quinaglia ACST, Osorio Costa F, et al. Anthracycline therapy is associated with cardiomyocyte atrophy and preclinical manifestations of heart disease[J]. JACC Cardiovasc Imaging, 2018, 11(8): 1045-1055. DOI: 10.1016/j.jcmg.2018.05.012.
[13]
Gripp EA, Oliveira GE, Feijo LA, et al. Global longitudinal strain accuracy for cardiotoxicity prediction in a cohort of breast cancer patients during anthracycline and/or trastuzumab treatment[J]. Arq Bras Cardiol, 2018, 110(2): 140-150. DOI: 10.5935/abc.20180021.
[14]
Haslbauer JD, Lindner S, Valbuena-Lopez S, et al. CMR imaging biosignature of cardiac involvement due to cancer-related treatment by T1 and T2 mapping[J]. Int J Cardiol, 2019, 275: 179-186. DOI: 10.1016/j.ijcard.2018.10.023.
[15]
Lustberg MB, Reinbolt R, Addison D, et al. Early Detection of anthracycline-induced cardiotoxicity in breast cancer survivors with T2 cardiac magnetic resonance[J]. Circ Cardiovasc Imaging, 2019, 12(5): e008777. DOI: 10.1161/CIRCIMAGING.118.008777.
[16]
Tong X, Li VW, Liu AP, et al. Cardiac magnetic resonance T1 mapping in adolescent and young adult survivors of childhood cancers[J]. Circ Cardiovasc Imaging, 2019, 12(4): e008453. DOI: 10.1161/CIRCIMAGING.118.008453.
[17]
De Ville De Goyet M, Brichard B, Robert A, et al. Prospective cardiac MRI for the analysis of biventricular function in children undergoing cancer treatments[J]. Pediatr Blood Cancer, 2015, 62(5): 867-874. DOI: 10.1002/pbc.25381.
[18]
Jordan JH, Vasu S, Morgan TM, et al. Anthracycline-associated T1 mapping characteristics are elevated independent of the presence of cardiovascular comorbidities in cancer survivors[J]. Circ Cardiovasc Imaging, 2016, 9(8). DOI: 10.1161/CIRCIMAGING.115.004325.
[19]
Neilan TG, Coelho-Filho OR, Pena-Herrera D, et al. Left ventricular mass in patients with a cardiomyopathy after treatment with anthracyclines[J]. Am J Cardiol, 2012, 110(11): 1679-1686. DOI: 10.1016/j.amjcard.2012.07.040.
[20]
Muehlberg F, Funk S, Zange L, et al. Native myocardial T1 time can predict development of subsequent anthracycline-induced cardiomyopathy[J]. ESC Heart Fail, 2018, 5(4): 620-629. DOI: 10.1002/ehf2.12277.
[21]
Modi K, Joppa S, Chen KA, et al. Myocardial damage assessed by late gadolinium enhancement on cardiovascular magnetic resonance imaging in cancer patients treated with anthracyclines and/or trastuzumab[J]. Eur Heart J Cardiovasc Imaging, 2020. DOI: 10.1093/ehjci/jeaa279.
[22]
Claus P, Omar AMS, Pedrizzetti G, et al. Tissue tacking technology for assessing cardiac mechanics: pinciples, normal values, and clinical applications[J]. JACC Cardiovasc Imaging, 2015, 8(12): 1444-1460. DOI: 10.1016/j.jcmg.2015.11.001.
[23]
Ibrahim El SH. Myocardial tagging by cardiovascular magnetic resonance: evolution of techniques--pulse sequences, analysis algorithms, and applications[J]. J Cardiovasc Magn Reson, 2011, 13: 36. DOI: 10.1186/1532-429X-13-36.
[24]
Almutairi HM, Boubertakh R, Miquel ME, et al. Myocardial deformation assessment using cardiovascular magnetic resonance-feature tracking technique[J]. Br J Radiol, 2017, 90(1080): 20170072. DOI: 10.1259/bjr.20170072.
[25]
Narayan HK, French B, Khan AM, et al. Noninvasive measures of ventricular-arterial coupling and circumferential strain predict cancer therapeutics-related cardiac dysfunction[J]. JACC Cardiovasc Imaging, 2016, 9(10): 1131-1141. DOI: 10.1016/j.jcmg.2015.11.024.
[26]
Portugal G, Moura Branco L, Galrinho A, et al. Global and regional patterns of longitudinal strain in screening for chemotherapy-induced cardiotoxicity[J]. Rev Port Cardiol, 2017, 36 (1): 9-15. DOI: 10.1016/j.repc.2016.06.009.
[27]
Lunning MA, Kutty S, Rome ET, et al. Cardiac magnetic resonance imaging for the assessment of the myocardium after doxorubicin-based chemotherapy[J]. Am J Clin Oncol, 2015, 38(4): 377-381. DOI: 10.1097/COC.0b013e31829e19be.
[28]
Zamorano JL, Lancellotti P, Rodriguez Munoz D, et al. 2016 ESC position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC committee for practice guidelines: the task force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC)[J]. Eur Heart J, 2016, 37(36): 2768-2801. DOI: 10.1093/eurheartj/ehw211.
[29]
Thavendiranathan P, Poulin F, Lim KD, et al. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review[J]. J Am Coll Cardiol, 2014, 63 (25Pt A): 2751-2768. DOI: 10.1016/j.jacc.2014.01.073.
[30]
Park CJ, Branch ME, Vasu S, et al. The role of cardiac MRI in animal models of cardiotoxicity: hopes and challenges[J]. J Cardiovasc Transl Res, 2020, 13(3): 367-376. DOI: 10.1007/s12265-020-09981-8.
[31]
Messroghli DR, Moon JC, Ferreira VM, et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI)[J]. J Cardiovasc Magn Reson, 2017, 19(1): 75. DOI: 10.1186/s12968-017-0389-8.
[32]
Treibel TA, Fridman Y, Bering P, et al. Extracellular volume associates with outcomes more strongly than native or post-contrast myocardial T1[J]. JACC Cardiovasc Imaging, 2020, 13(1Pt 1): 44-54. DOI: 10.1016/j.jcmg.2019.03.017.
[33]
Tham EB, Haykowsky MJ, Chow K, et al. Diffuse myocardial fibrosis by T1-mapping in children with subclinical anthracycline cardiotoxicity: relationship to exercise capacity, cumulative dose and remodeling[J]. J Cardiovasc Magn Reson, 2013, 15: 48. DOI: 10.1186/1532-429X-15-48.
[34]
Yu AF, Chan AT, Steingart RM. Cardiac magnetic resonance and cardio-oncology: does T2 signal the end of anthracycline cardiotoxicity?[J]. J Am Coll Cardiol, 2019, 73(7): 792-794. DOI: 10.1016/j.jacc.2018.11.045.
[35]
Galan-Arriola C, Lobo M, Vilchez-Tschischke JP, et al. Serial magnetic resonance imaging to identify early stages of anthracycline-induced cardiotoxicity[J]. J Am Coll Cardiol, 2019, 73(7): 779-791. DOI: 10.1016/j.jacc.2018.11.046.
[36]
Farhad H, Staziaki PV, Addison D, et al. Characterization of the changes in cardiac structure and function in mice treated with anthracyclines using serial cardiac magnetic resonance imaging[J]. Circ Cardiovasc Imaging, 2016, 9(12). DOI: 10.1161/CIRCIMAGING.115.003584.

PREV MRI research progress of brain function and structure in patients with major depressive disorder before and after treatment
NEXT Principle of T1 mapping technique and its research progress in myocardial quantification
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn