Share:
Share this content in WeChat
X
Clinical Article
Differential diagnosis of cerebral alveolar echinococcosis and brain metastases based on MRI perfusion weighted imaging and support vector machine
Nuerbiyemu•Abulikemu   YANG Jing  LIU Jundi  GAO Xin  WANG Gang  ZHAO Jingjing  ZHANG Yafei  JI Sihui  JIANG Chunhui  DING Shuang  WANG Yunling  LIU Wenya  JIA Wenxiao  WANG Jian 

Cite this article as: Abulikemu N, Yang J, Liu Jd, et al. Differential diagnosis of cerebral alveolar echinococcosis and brain metastases based on MRI perfusion weighted imaging and support vector machine[J]. Chin J Magn Reson Imaging, 2022, 13(4): 26-31. DOI:10.12015/issn.1674-8034.2022.04.005.


[Abstract] Objective To investigate the efficacy of MRI perfusion weighted imaging (PWI) and support vector machine (SVM) in the differential diagnosis of cerebral alveolar echinococcosis (CAE) and brain metastases (BMT).Materials and Methods The records of patients who pathologically or clinically diagnosed with CAE (15 patients) and BMT (15 patients) were reviewed retrospectively. The perfusion parameters (cerebral blood flow, cerebral blood volume, mean transit time and time to peak) of solid area, perilesion edema and contralateral relative normal area in both lesions were measured and used for evaluation of CAE and BMT. Based on perfusion parameters, SVM and other classifiers were used to identify two diseases.Results In the diagnosis of CAE/BMT, rCBF and rCBV of solid area achieved area under curve (AUC) of 0.739/0.960 and 0.710/0.913. The diagnostic efficiency of rCBF and rCBV in solid area was higher than that of MTT and TTP; The rCBF, rCBV value of CAE solid area were significantly lower than that of BMT and TTP value was significantly higher (P<0.01). The rCBF, rCBV value of CAE prelesion edema were significantly lower than that of BMT (P<0.01); Based on the perfusion parameters of lesion solid area, the use of SVM classifier can improve the discrimination accuracy.Conclusions PWI can provide an objective basis for the differential diagnosis of CAE and BMT. SVM classifier can enhance the accuracy of PWI in differentiation of these two diseases.
[Keywords] cerebral alveolar echinococcosis;brain metastases;magnetic resonance imaging;perfusion weighted imaging;support vector machine

Nuerbiyemu•Abulikemu 1   YANG Jing1, 2   LIU Jundi1   GAO Xin1   WANG Gang1   ZHAO Jingjing1   ZHANG Yafei3   JI Sihui3   JIANG Chunhui1   DING Shuang1   WANG Yunling1   LIU Wenya1   JIA Wenxiao1   WANG Jian1*  

1 Imaging Center, Xinjiang Medical University First Affiliated Hospital, Urumqi 830000, China

2 Department of Radiology, Beilun Branch, Zhejiang University School of Medicine First Affiliated Hospital, Ningbo 315800, China

3 Shanghai University School of Computer Engineering and Science, Shanghai 200444, China

Wang J, E-mail: jeanw1265@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Key R&D Program of Xinjiang Uygur Autonomous Region (No.2016B03052).
Received  2021-10-29
Accepted  2022-03-21
DOI: 10.12015/issn.1674-8034.2022.04.005
Cite this article as: Abulikemu N, Yang J, Liu Jd, et al. Differential diagnosis of cerebral alveolar echinococcosis and brain metastases based on MRI perfusion weighted imaging and support vector machine[J]. Chin J Magn Reson Imaging, 2022, 13(4): 26-31. DOI:10.12015/issn.1674-8034.2022.04.005.

[1]
Du GJ, Li YD, Wu P, et al. Diagnosis, treatment, and misdiagnosis analysis of 28 cases of central nervous system echinococcosis[J]. Chin Neurosurg J, 2021, 7(1): 30. DOI: 10.1186/s41016-021-00248-y.
[2]
Wuerken W, Wang ZL. Advances in diagnosis and treatment of cerebral vesicular echinococcosis[J]. Chin J Neurosurge, 2021, 37(6): 645-648. DOI: 10.3760/cma.j.cn112050-20200905-00494.
[3]
She D, Yang X, Xing Z, et al. Differentiating hemangioblastomas from brain metastases using diffusion-weighted imaging and dynamic susceptibility contrast-enhanced perfusion-weighted MR imaging[J]. AJNR Am J Neuroradiol, 2016, 37(10): 1844-1850. DOI: 10.3174/ajnr.A4809.
[4]
Sawlani V, Patel MD, Davies N, et al. Multiparametric MRI: practical approach and pictorial review of a useful tool in the evaluation of brain tumours and tumour-like lesions[J]. Insights Imaging, 2020, 11(1): 84. DOI: 10.1186/s13244-020-00888-1.
[5]
Lai PH, Chung HW, Chang HC, et al. Susceptibility-weighted imaging provides complementary value to diffusion-weighted imaging in the differentiation between pyogenic brain abscesses, necrotic glioblastomas, and necrotic metastatic brain tumors[J]. Eur J Radiol, 2019, 117: 56-61. DOI: 10.1016/j.ejrad.2019.05.021.
[6]
Overcast WB, Davis KM, Ho CY, et al. Advanced imaging techniques for neuro-oncologic tumor diagnosis, with an emphasis on PET-MRI imaging of malignant brain tumors[J]. Curr Oncol Rep, 2021, 23(3): 34. DOI: 10.1007/s11912-021-01020-2.
[7]
Morana G, Piccardo A, Tortora D, et al. Grading and outcome prediction of pediatric diffuse astrocytic tumors with diffusion and arterial spin labeling perfusion MRI in comparison with 18F-DOPA PET[J]. Eur J Nucl Med Mol Imaging, 2017, 44(12): 2084-2093. DOI: 10.1007/s00259-017-3777-2.
[8]
Ye CY, Lin QB, Jin Z, et al. Predictive effect of DCE-MRI and DWI in brain metastases from NSCLC[J]. Open Med (Wars), 2021, 16(1): 1265-1275. DOI: 10.1515/med-2021-0260.
[9]
Huang JY, Milchenko M, Rao YJ, et al. A feasibility study to evaluate early treatment response of brain metastases one week after stereotactic radiosurgery using perfusion weighted imaging[J]. PLoS One, 2020, 15(11): e0241835. DOI: 10.1371/journal.pone.0241835.
[10]
Zhang JF, Liu H, Tong HP, et al. Clinical applications of contrast-enhanced perfusion MRI techniques in gliomas: recent advances and current challenges[J]. Contrast Media Mol Imaging, 2017, 2017: 7064120. DOI: 10.1155/2017/7064120.
[11]
Zhao H, Bai Y, Wang MY. Progress of multimodality magnetic resonance imaging in genotyping and prognostic evaluation of gliomas[J]. Chin J Magn Reson Imaging, 2021, 12(9): 98-102. DOI: 10.12015/issn.1674-8034.2021.09.025.
[12]
Floriano VH, Torres US, Spotti AR, et al. The role of dynamic susceptibility contrast-enhanced perfusion MR imaging in differentiating between infectious and neoplastic focal brain lesions: results from a cohort of 100 consecutive patients[J]. PLoS One, 2013, 8(12): e81509. DOI: 10.1371/journal.pone.0081509.
[13]
Zhang J, Jin JB, Ai Y, et al. Differentiating the pathological subtypes of primary lung cancer for patients with brain metastases based on radiomics features from brain CT images[J]. Eur Radiol, 2021, 31(2): 1022-1028. DOI: 10.1007/s00330-020-07183-z.
[14]
Zhou Y, Ma XL, Zhang T, et al. Use of radiomics based on 18F-FDG PET/CT and machine learning methods to aid clinical decision-making in the classification of solitary pulmonary lesions: an innovative approach[J]. Eur J Nucl Med Mol Imaging, 2021, 48(9): 2904-2913. DOI: 10.1007/s00259-021-05220-7.
[15]
Wang ZW, Dabrosin C, Yin X, et al. Broad targeting of angiogenesis for cancer prevention and therapy[J]. Semin Cancer Biol, 2015, 35(Suppl): S224-S243. DOI: 10.1016/j.semcancer.2015.01.001.
[16]
Jeong JH, Ojha U, Lee YM. Pathological angiogenesis and inflammation in tissues[J]. Arch Pharm Res, 2021, 44(1): 1-15. DOI: 10.1007/s12272-020-01287-2.
[17]
Sajib S, Zahra FT, Lionakis MS, et al. Mechanisms of angiogenesis in microbe-regulated inflammatory and neoplastic conditions[J]. Angiogenesis, 2018, 21(1): 1-14. DOI: 10.1007/s10456-017-9583-4.
[18]
Shiroishi MS, Castellazzi G, Boxerman JL, et al. Principles of T2*- weighted dynamic susceptibility contrast MRI technique in brain tumor imaging[J]. J Magn Reson Imaging, 2015, 41(2): 296-313. DOI: 10.1002/jmri.24648.
[19]
Bladowska J, Zimny A, Guziński M, et al. Usefulness of perfusion weighted magnetic resonance imaging with signal-intensity curves analysis in the differential diagnosis of sellar and parasellar tumors: preliminary report[J]. Eur J Radiol, 2013, 82(8): 1292-1298. DOI: 10.1016/j.ejrad.2013.01.033.
[20]
Maia AC, Malheiros SM, da Rocha AJ, et al. MR cerebral blood volume maps correlated with vascular endothelial growth factor expression and tumor grade in nonenhancing gliomas[J]. AJNR Am J Neuroradiol, 2005, 26(4): 777-783.
[21]
Wang J, Yibanu A, Jiang CH, et al. 1H MR spectrosctpy characteristic of cerebral alveolar echinococcosis[J]. Chin J Radiol, 2014, 48(2): 89-92. DOI: 10.3760/cma.j.issn.1005-1201.2014.02.001.
[22]
Liu JD, Tian H, Zhang D, et al. MR-Diffusion characteristics of cerebral alveolar echinococcosis and its role in differentiating cerebral alveolar echinococcosis from metastases[J]. Radiol Infect Dis, 2018, 5(4): 160-164. DOI: 10.1016/j.jrid.2018.12.001.
[23]
Li SS, Chen JN, He YQ, et al. Clinical features, radiological characteristics, and outcomes of patients with intracranial alveolar echinococcosis: a case series from Tibetan areas of Sichuan Province, China[J]. Front Neurol, 2020, 11: 537565. DOI: 10.3389/fneur.2020.537565.
[24]
Wang F, Gao X, Rong J, et al. The significance of perfusion-weighted magnetic resonance imaging in evaluating the pathological biological activity of cerebral alveolar echinococcosis[J]. J Comput Assist Tomogr, 2022, 46(1): 131-139. DOI: 10.1097/RCT.0000000000001253.
[25]
Huang R, Yang J, Wang F, et al. The application of magnetic resonance IVIM and PWI technology in the diagnosis of cerebral alveolar echinococcosis and its marginal zone[J]. J Clin Radiol, 2021, 40(6): 1065-1070. DOI: 10.13437/j.cnki.jcr.2021.06.007.
[26]
Yibulayin A, Li XH, Qin YD, et al. Biological characteristics of 18F-FDG PET/CT imaging of cerebral alveolar echinococcosis[J]. Medicine (Baltimore), 2018, 97(39): e11801. DOI: 10.1097/MD.0000000000011801.
[27]
Tateishi U. Vascular endothelial growth factor-related angiogenesis[J]. Radiology, 2005, 235(3): 1084. DOI: 10.1148/radiol.2353042072.
[28]
Chatterjee S, Saini J, Kesavadas C, et al. Differentiation of tubercular infection and metastasis presenting as ring enhancing lesion by diffusion and perfusion magnetic resonance imaging[J]. J De Neuroradiol, 2010, 37(3): 167-171. DOI: 10.1016/j.neurad.2009.08.005.
[29]
Liu JD. Quantitative analysis of magnetic resonance perfusion imaging in diagnosis and differential diagnosis of alveolar echinococcosis and brain metastases[D]. Urumqi: Xinjiang Medical University, 2019.
[30]
Qian ZH, Li YM, Wang YZ, et al. Differentiation of glioblastoma from solitary brain metastases using radiomic machine-learning classifiers[J]. Cancer Lett, 2019, 451: 128-135. DOI: 10.1016/j.canlet.2019.02.054.
[31]
Priya S, Liu YN, Ward C, et al. Machine learning based differentiation of glioblastoma from brain metastasis using MRI derived radiomics[J]. Sci Rep, 2021, 11(1): 10478. DOI: 10.1038/s41598-021-90032-w.
[32]
Qi GQ, Wu D, Hu B, et al. Application of machine learning in the diagnosis of brain dysfunction by magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2021, 12(10): 85-88. DOI: 10.12015/issn.1674-8034.2021.10.022.

PREV The diagnostic value of 18F-FDG PET/MR for cerebral tumefactive demyelinating lesions
NEXT Evaluation of the relationship between cervicocranial artery dissection and acute ischemic stroke based on high-resolution MRI
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn