Share:
Share this content in WeChat
X
Technical Article
A comparative study on phantom verification of T1 and T2 relaxation values determined by synthetic MRI and conventional mapping methods
LIU Yawen  NIU Haijun  YIN Hongxia  ZHENG Zuofeng  REN Pengling  ZHANG Tingting  ZHAO Pengfei  LÜ Han  WANG Zhenchang 

Cite this article as: Liu YW, Niu HJ, Yin HX, et al. A comparative study on phantom verification of T1 and T2 relaxation values determined by synthetic MRI and conventional mapping methods[J]. Chin J Magn Reson Imaging, 2022, 13(4): 89-93. DOI:10.12015/issn.1674-8034.2022.04.016.


[Abstract] Objective To verify the accuracy and repeatability of the quantitative imaging of longitudinal relaxation time (T1) and transverse relaxation time (T2) relaxation in synthetic MRI.Materials and Methods For a 3.0 T MR device, three phantoms of gray matter, white matter and cerebrospinal fluid were respectively scanned by synthetic MRI and conventional quantitative magnetic resonance imaging (qMRI), and the acquisition was repeated four times. For conventional qMRI, the corresponding T1 and T2 values were obtained by fitting calculation, while for synthetic MRI, the T1 and T2 values were calculated using MAGiC software. Two-way analysis of variance was used to compare phantom values obtained by synthetic MRI and those calculated by conventional mapping methods.Results The results of analysis of variance of T1and T2 showed that there are no significant difference between the synthetic MRI and conventional qMRI (F=0.113, P=0.7537 and F=0.001, P=0.9737, respectively). For either method, there was no significant difference at different time points (F=0.613, P=0.4968 and F=1.162, P=0.3498, respectively).Conclusions The relaxation quantitative calculation results of T1 and T2 under the synthetic MRI are accurate, which is conducive to clinical application.
[Keywords] quantitative magnetic resonance imaging;synthetic magnetic resonance imaging;phantom verification;cerebral disease

LIU Yawen1, 2   NIU Haijun1, 2   YIN Hongxia3   ZHENG Zuofeng4   REN Pengling3   ZHANG Tingting1, 2, 3   ZHAO Pengfei3   LÜ Han3   WANG Zhenchang1, 2, 3  

1 School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China

2 Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China

3 Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China

4 Department of Radiology, Beijing Chuiyangliu Hospital, Beijing 100022, China

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 61931013); Beijing Scholar 2015 (WANG Zhenchang).
Received  2021-11-23
Accepted  2022-03-21
DOI: 10.12015/issn.1674-8034.2022.04.016
Cite this article as: Liu YW, Niu HJ, Yin HX, et al. A comparative study on phantom verification of T1 and T2 relaxation values determined by synthetic MRI and conventional mapping methods[J]. Chin J Magn Reson Imaging, 2022, 13(4): 89-93. DOI:10.12015/issn.1674-8034.2022.04.016.

[1]
Xu LZ, Xu L, He MY, et al. Reproducibility of T1, T2 quantitative relaxation study of synthetic MRI[J]. Radiol Pract, 2019, 34(11): 1178-1181. DOI: 10.13609/j.cnki.1000-0313.2019.11.001.
[2]
Luo MF, Sun ZB, Rong K, et al. Principle and research progress of quantitative magnetic resonance imaging[J]. J Mol Imaging, 2020, 43(4): 572-576. DOI: 10.12122/j.issn.1674-4500.2020.04.04.
[3]
Zhou D, Zhao SH, Lu MJ. Advanced in myocardial T1-mapping: imaging techniques and clinical application[J]. Radiol Pract, 2020, 35(7): 933-938. DOI: 10.13609/j.cnki.1000-0313.2020.07.020.
[4]
Wang SL, Zhao SH, Lu MJ. Cardiac T1-mapping and T2-mapping techniques and their application in myocardial infarction[J]. Radiol Pract, 2019, 34(6): 694-697. DOI: 10.13609/j.cnki.1000-0313.2019.06.020.
[5]
Fujita S, Hagiwara A, Aoki S, et al. Synthetic MRI and MR fingerprinting in routine neuroimaging protocol: What's the next step?[J]. J Neuroradiol, 2020, 47(2): 134-135. DOI: 10.1016/j.neurad.2020.02.001.
[6]
Mehta BB, Coppo S, McGivney DF, et al. Magnetic resonance fingerprinting: a technical review[J]. Magn Reson Med, 2019, 81(1): 25-46. DOI: 10.1002/mrm.27403.
[7]
Ji S, Yang DJ, Lee J, et al. Synthetic MRI: technologies and applications in neuroradiology[J]. J Magn Reson Imaging, 2022, 55(4): 1013-1025. DOI: 10.1002/jmri.27440.
[8]
Chen S, Ouyang H. The application value of synthetic MRI in diagnosis[J]. Chin J Magn Reson Imaging, 2020, 11(9): 833-836. DOI: 10.12015/issn.1674-8034.2020.09.027.
[9]
Gao WB, Yang QX, Chen X, et al. The value of synthetic MRI in the differential diagnosis of benign and malignant breast lesions[J]. Chin J Radiol, 2021, 55(6): 605-608. DOI: 10.3760/cma.j.cn112149-20200831-01043.
[10]
Liu HM, Yin GP, Bie F, et al. Comparison of image quality of brain between conventional MR sequence and compilation sequence[J]. Chin J Med Imaging Technol, 2019, 35(2): 268-271. DOI: 10.13929/j.1003-3289.201805163.
[11]
Hagiwara A, Hori M, Yokoyama K, et al. Synthetic MRI in the detection of multiple sclerosis plaques[J]. AJNR Am J Neuroradiol, 2017, 38(2): 257-263. DOI: 10.3174/ajnr.A5012.
[12]
Ryu KH, Baek HJ, Moon JI, et al. Initial clinical experience of synthetic MRI as a routine neuroimaging protocol in daily practice: a single-center study[J]. J De Neuroradiol, 2020, 47(2): 151-160. DOI: 10.1016/j.neurad.2019.03.002.
[13]
Drake-Pérez M, Delattre BMA, Boto J, et al. Normal values of magnetic relaxation parameters of spine components with the synthetic MRI sequence[J]. AJNR Am J Neuroradiol, 2018, 39(4): 788-795. DOI: 10.3174/ajnr.A5566.
[14]
Krauss W, Gunnarsson M, Andersson T, et al. Accuracy and reproducibility of a quantitative magnetic resonance imaging method for concurrent measurements of tissue relaxation times and proton density[J]. Magn Reson Imaging, 2015, 33(5): 584-591. DOI: 10.1016/j.mri.2015.02.013.
[15]
Jiang YW, Yu L, Luo XJ, et al. Quantitative synthetic MRI for evaluation of the lumbar intervertebral disk degeneration in patients with chronic low back pain[J]. Eur J Radiol, 2020, 124: 108858. DOI: 10.1016/j.ejrad.2020.108858.
[16]
Warntjes JB, Leinhard OD, West J, et al. Rapid magnetic resonance quantification on the brain: Optimization for clinical usage[J]. Magn Reson Med, 2008, 60(2): 320-329. DOI: 10.1002/mrm.21635.
[17]
Warntjes JB, Dahlqvist O, Lundberg P. Novel method for rapid, simultaneous T1, T2*, and proton density quantification[J]. Magn Reson Med, 2007, 57(3): 528-537. DOI: 10.1002/mrm.21165.
[18]
Barral JK, Gudmundson E, Stikov N, et al. A robust methodology for in vivo T1 mapping[J]. Magn Reson Med, 2010, 64(4): 1057-1067. DOI: 10.1002/mrm.22497.
[19]
Tanenbaum LN, Tsiouris AJ, Johnson AN, et al. Synthetic MRI for clinical neuroimaging: results of the magnetic resonance image compilation (MAGiC) prospective, multicenter, multireader trial[J]. AJNR Am J Neuroradiol, 2017, 38(6): 1103-1110. DOI: 10.3174/ajnr.A5227.
[20]
Burrage MK, Shanmuganathan M, Zhang Q, et al. Cardiac stress T1-mapping response and extracellular volume stability of MOLLI-based T1-mapping methods[J]. Sci Rep, 2021, 11(1): 13568. DOI: 10.1038/s41598-021-92923-4.
[21]
Gräfe D, Frahm J, Merkenschlager A, et al. Quantitative T1 mapping of the normal brain from early infancy to adulthood[J]. Pediatr Radiol, 2021, 51(3): 450-456. DOI: 10.1007/s00247-020-04842-7.
[22]
Kim BR, Yoo HJ, Chae HD, et al. Fat-suppressed T2 mapping of human knee femoral articular cartilage: comparison with conventional T2 mapping[J]. BMC Musculoskelet Disord, 2021, 22(1): 662. DOI: 10.1186/s12891-021-04542-9.
[23]
Hoffman DH, Ayoola A, Nickel D, et al. T1 mapping, T2 mapping and MR elastography of the liver for detection and staging of liver fibrosis[J]. Abdom Radiol (NY), 2020, 45(3): 692-700. DOI: 10.1007/s00261-019-02382-9.
[24]
Hagiwara A, Hori M, Cohen-Adad J, et al. Linearity, bias, intrascanner repeatability, and interscanner reproducibility of quantitative multidynamic multiecho sequence for rapid simultaneous relaxometry at 3 T: a validation study with a standardized phantom and healthy controls[J]. Invest Radiol, 2019, 54(1): 39-47. DOI: 10.1097/RLI.0000000000000510.
[25]
Hagiwara A, Fujimoto K, Kamagata K, et al. Age-related changes in relaxation times, proton density, myelin, and tissue volumes in adult brain analyzed by 2-dimensional quantitative synthetic magnetic resonance imaging[J]. Invest Radiol, 2021, 56(3): 163-172. DOI: 10.1097/RLI.0000000000000720.
[26]
Kang KM, Choi SH, Kim H, et al. The effect of varying slice thickness and interslice gap on T1 and T2 measured with the multidynamic multiecho sequence[J]. Magn Reson Med Sci, 2019, 18(2): 126-133. DOI: 10.2463/mrms.mp.2018-0010.
[27]
Fujita S, Hagiwara A, Hori M, et al. Three-dimensional high-resolution simultaneous quantitative mapping of the whole brain with 3D-QALAS: an accuracy and repeatability study[J]. Magn Reson Imaging, 2019, 63: 235-243. DOI: 10.1016/j.mri.2019.08.031.
[28]
Fujita S, Hagiwara A, Hori M, et al. 3D quantitative synthetic MRI-derived cortical thickness and subcortical brain volumes: scan-rescan repeatability and comparison with conventional T1-weighted images[J]. J Magn Reson Imaging, 2019, 50(6): 1834-1842. DOI: 10.1002/jmri.26744.

PREV Compared study on the efficacy and safety of MR and CT guided percutaneous VX2 hepatic para-vascular tumor model in rabbits
NEXT Effect of signal intensity inhomogeneity correction on quantitative susceptibility mapping of brain
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn