Share:
Share this content in WeChat
X
Review
Application progress of high-resolution magnetic resonance imaging vascular wall imaging in ischemic stroke
YANG Li  WANG Xiaochun 

Cite this article as: Yang L, Wang XC. Application progress of high-resolution magnetic resonance imaging vascular wall imaging in ischemic stroke[J]. Chin J Magn Reson Imaging, 2022, 13(5): 136-139. DOI:10.12015/issn.1674-8034.2022.05.028.


[Abstract] Atherosclerosis is a major cause of the occurrence and development of ischemic stroke. Early identification of unstable plaque is very important for the prevention and treatment of ischemic stroke. High resolution magnetic resonance imaging vascular wall imaging (HR-VWI) not only can directly evaluate the condition of lumen stenosis and vascular remodeling, but also can qualitatively or quantitatively evaluate the plaque composition and plaque load, judge the etiology and pathogenesis of ischemic stroke, identify the high-risk characteristics of plaque closely related to the occurrence and recurrence of ischemic stroke. Then it can guide clinical active intervention and prevent the occurrence and recurrence of ischemic stroke. This review will discuss the identification of high-risk plaques by HR-VWI and its role in the etiology identification, prevention and recurrence prediction of ischemic stroke.
[Keywords] magnetic resonance imaging;vascular wall imaging;atherosclerosis;ischemic stroke

YANG Li1   WANG Xiaochun2*  

1 Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China

2 Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China

Wang XC, E-mail: 2010xiaochun@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 81971592); Beijing Medical Award Foundation (No. YXJL-2021-0353-0604).
Received  2022-02-28
Accepted  2022-04-29
DOI: 10.12015/issn.1674-8034.2022.05.028
Cite this article as: Yang L, Wang XC. Application progress of high-resolution magnetic resonance imaging vascular wall imaging in ischemic stroke[J]. Chin J Magn Reson Imaging, 2022, 13(5): 136-139. DOI:10.12015/issn.1674-8034.2022.05.028.

[1]
Kopczak A, Schindler A, Bayer-Karpinska A, et al. Complicated carotid artery plaques as a cause of cryptogenic stroke[J]. J Am Coll Cardiol, 2020, 76(19): 2212-2222. DOI: 10.1016/j.jacc.2020.09.532.
[2]
Song JL, Wang Z, Wei JL, et al. Analysis on the characteristics of middle cerebral arterial plaque in young and middle-aged patients with acute ischemic cerebrovascular disease[J]. Chin J Gen Pract, 2021, 19(11): 1811-1814. DOI: 10.16766/j.cnki.issn.1674-4152.002173.
[3]
Li WL, Ma L, Wang ZT, et al. A high-resolution MRI study on relationship between carotid artery remodeling and cerebrovascular events[J]. Chin J Med Imaging, 2021, 29(5): 444-448. DOI: 10.3969/j.issn.1005-5185.2021.05.008.
[4]
Alexander MD, Yuan C, Rutman A, et al. High-resolution intracranial vessel wall imaging: imaging beyond the lumen[J]. J Neurol Neurosurg Psychiatry, 2016, 87(6): 589-597. DOI: 10.1136/jnnp-2015-312020.
[5]
Xu L, Wang RJ, Liu HY, et al. Comparison of the diagnostic performances of ultrasound, high-resolution magnetic resonance imaging, and positron emission tomography/computed tomography in a rabbit carotid vulnerable plaque atherosclerosis model[J]. J Ultrasound Med, 2020, 39(11): 2201-2209. DOI: 10.1002/jum.15331.
[6]
Shi Z, Li J, Zhao M, et al. Quantitative histogram analysis on intracranial atherosclerotic plaques: a high-resolution magnetic resonance imaging study[J]. Stroke, 2020, 51(7): 2161-2169. DOI: 10.1161/STROKEAHA.120.029062.
[7]
Kurosaki Y, Yoshida K, Fukumitsu R, et al. Carotid artery plaque assessment using quantitative expansive remodeling evaluation and MRI plaque signal intensity[J]. J Neurosurg, 2016, 124(3): 736-742. DOI: 10.3171/2015.2.JNS142783.
[8]
Song JW, Pavlou A, Xiao JY, et al. Vessel wall magnetic resonance imaging biomarkers of symptomatic intracranial atherosclerosis: a meta-analysis[J]. Stroke, 2021, 52(1): 193-202. DOI: 10.1161/STROKEAHA.120.031480.
[9]
Lu SS, Ge S, Su CQ, et al. Plaque distribution and characteristics in low-grade middle cerebral artery Stenosis and its clinical relevance: a 3-dimensional high-resolution magnetic resonance imaging study[J]. J Stroke Cerebrovasc Dis, 2018, 27(8): 2243-2249. DOI: 10.1016/j.jstrokecerebrovasdis.2018.04.010.
[10]
Wu F, Yu H, Yang Q. Imaging of intracranial atherosclerotic plaques using 3.0 T and 7.0 T magnetic resonance imaging-current trends and future perspectives[J]. Cardiovasc Diagn Ther, 2020, 10(4): 994-1004. DOI: 10.21037/cdt.2020.02.03.
[11]
Xu WH, Li ML, Gao S, et al. Plaque distribution of stenotic middle cerebral artery and its clinical relevance[J]. Stroke, 2011, 42(10): 2957-2959. DOI: 10.1161/STROKEAHA.111.618132.
[12]
Sun Y, Xu L, Jiang Y, et al. Significance of high resolution MRI in the identification of carotid plaque[J]. Exp Ther Med, 2020, 20(4): 3653-3660. DOI: 10.3892/etm.2020.9091.
[13]
Yang WJ, Wong KS, Chen XY. Intracranial atherosclerosis: from microscopy to high-resolution magnetic resonance imaging[J]. J Stroke, 2017, 19(3): 249-260. DOI: 10.5853/jos.2016.01956.
[14]
Saba, Saam T, Jäger HR, et al. Imaging biomarkers of vulnerable carotid plaques for stroke risk prediction and their potential clinical implications[J]. Lancet Neurol, 2019, 18(6): 559-572. DOI: 10.1016/S1474-4422(19)30035-3.
[15]
Leung TW, Wang L, Zou XY, et al. Plaque morphology in acute symptomatic intracranial atherosclerotic disease[J]. J Neurol Neurosurg Psychiatry, 2020, 92(4): 370-376. DOI: 10.1136/jnnp-2020-325027.
[16]
Yang D, Liu Y, Han Y, et al. Signal of carotid intraplaque hemorrhage on MR T1-weighted imaging: association with acute cerebral infarct[J]. AJNR Am J Neuroradiol, 2020, 41(5): 836-843. DOI: 10.3174/ajnr.A6498.
[17]
Schindler A, Schinner R, Altaf N, et al. Prediction of stroke risk by detection of hemorrhage in carotid plaques: meta-analysis of individual patient data[J]. JACC Cardiovasc Imaging, 2020, 13(2Pt 1): 395-406. DOI: 10.1016/j.jcmg.2019.03.028.
[18]
Sun J, Underhill HR, Hippe DS, et al. Sustained acceleration in carotid atherosclerotic plaque progression with intraplaque hemorrhage: a long-term time course study[J]. JACC Cardiovasc Imaging, 2012, 5(8): 798-804. DOI: 10.1016/j.jcmg.2012.03.014.
[19]
Alkhalil M, Choudhury RP. Intraplaque hemorrhage as a marker of stroke risk[J]. JACC Cardiovasc Imaging, 2020, 13(2Pt 1): 407-409. DOI: 10.1016/j.jcmg.2019.05.004.
[20]
Porcu M, Anzidei M, Suri JS, et al. Carotid artery imaging: the study of intra-plaque vascularization and hemorrhage in the era of the "vulnerable" plaque[J]. J Neuroradiol, 2020, 47(6): 464-472. DOI: 10.1016/j.neurad.2019.03.009.
[21]
Nies KPH, Smits LJM, Kassem M, et al. Emerging role of carotid MRI for personalized ischemic stroke risk prediction in patients with carotid artery Stenosis[J]. Front Neurol, 2021, 12: 718438. DOI: 10.3389/fneur.2021.718438.
[22]
Zhao JJ, Lu Y, Cui JY, et al. Characteristics of symptomatic plaque on high-resolution magnetic resonance imaging and its relationship with the occurrence and recurrence of ischemic stroke[J]. Neurol Sci, 2021, 42(9): 3605-3613. DOI: 10.1007/s10072-021-05457-y.
[23]
Liu Y, Wang MX, Zhang B, et al. Size of carotid artery intraplaque hemorrhage and acute ischemic stroke: a cardiovascular magnetic resonance Chinese atherosclerosis risk evaluation study[J]. J Cardiovasc Magn Reson, 2019, 21(1): 36. DOI: 10.1186/s12968-019-0548-1.
[24]
Yang WJ, Abrigo J, Soo YO, et al. Regression of plaque enhancement within symptomatic middle cerebral artery atherosclerosis: a high-resolution MRI study[J]. Front Neurol, 2020, 11: 755. DOI: 10.3389/fneur.2020.00755.
[25]
Fakih R, Roa JA, Bathla G, et al. Detection and quantification of symptomatic atherosclerotic plaques with high-resolution imaging in cryptogenic stroke[J]. Stroke, 2020, 51(12): 3623-3631. DOI: 10.1161/STROKEAHA.120.031167.
[26]
Derdeyn CP, Chimowitz MI, Lynn MJ, et al. Aggressive medical treatment with or without stenting in high-risk patients with intracranial artery stenosis (SAMMPRIS): the final results of a randomised trial[J]. Lancet, 2014, 383(9914): 333-341. DOI: 10.1016/S0140-6736(13)62038-3.
[27]
Shi Z, Li J, Zhao M, et al. Progression of plaque burden of intracranial atherosclerotic plaque predicts recurrent stroke/transient ischemic attack: a pilot follow-up study using higher-resolution MRI[J]. J Magn Reson Imaging, 2021, 54(2): 560-570. DOI: 10.1002/jmri.27561.
[28]
Ran YC, Wang YT, Zhu M, et al. Higher plaque burden of middle cerebral artery is associated with recurrent ischemic stroke: a quantitative magnetic resonance imaging study[J]. Stroke, 2020, 51(2): 659-662. DOI: 10.1161/STROKEAHA.119.028405.
[29]
Song XW, Zhao XH, Liebeskind DS, et al. Incremental value of plaque enhancement in predicting stroke recurrence in symptomatic intracranial atherosclerosis[J]. Neuroradiology, 2020, 62(9): 1123-1131. DOI: 10.1007/s00234-020-02418-8.
[30]
Kim JM, Jung KH, Sohn CH, et al. Intracranial plaque enhancement from high resolution vessel wall magnetic resonance imaging predicts stroke recurrence[J]. Int J Stroke, 2016, 11(2): 171-179. DOI: 10.1177/1747493015609775.
[31]
Xu YL, Yuan C, Zhou ZC, et al. Co-existing intracranial and extracranial carotid artery atherosclerotic plaques and recurrent stroke risk: a three-dimensional multicontrast cardiovascular magnetic resonance study[J]. J Cardiovasc Magn Reson, 2016, 18(1): 90. DOI: 10.1186/s12968-016-0309-3.
[32]
Kang HG, Lee CH, Shin BS, et al. Characteristics of symptomatic basilar artery Stenosis using high-resolution magnetic resonance imaging in ischemic stroke patients[J]. J Atheroscler Thromb, 2021, 28(10): 1063-1070. DOI: 10.5551/jat.58214.
[33]
Wu Y, Wu F, Liu YH, et al. High-resolution magnetic resonance imaging of cervicocranial artery dissection: imaging features associated with stroke[J]. Stroke, 2019, 50(11): 3101-3107. DOI: 10.1161/STROKEAHA.119.026362.
[34]
Kim HJ, Choi EH, Chung JW, et al. Luminal and wall changes in intracranial arterial lesions for predicting stroke occurrence[J]. Stroke, 2020, 51(8): 2495-2504. DOI: 10.1161/STROKEAHA.120.030012.
[35]
Fabiani I, Palombo C, Caramella D, et al. Imaging of the vulnerable carotid plaque: role of imaging techniques and a research agenda[J]. Neurology, 2020, 94(21): 922-932. DOI: 10.1212/WNL.0000000000009480.
[36]
Mury P, Mura M, Della-Schiava N, et al. Association between physical activity and sedentary behaviour on carotid atherosclerotic plaques: an epidemiological and histological study in 90 asymptomatic patients[J]. Br J Sports Med, 2020, 54(8): 469-474. DOI: 10.1136/bjsports-2018-099677.
[37]
Zhu XJ, Wang W, Liu ZJ. High-resolution magnetic resonance vessel wall imaging for intracranial arterial Stenosis[J]. Chin Med J (Engl), 2016, 129(11): 1363-1370. DOI: 10.4103/0366-6999.182826.
[38]
Chung JW, Cha J, Lee MJ, et al. Intensive statin treatment in acute ischaemic stroke patients with intracranial atherosclerosis: a high-resolution magnetic resonance imaging study (STAMINA-MRI study)[J]. J Neurol Neurosurg Psychiatry, 2020, 91(2): 204-211. DOI: 10.1136/jnnp-2019-320893.
[39]
Shi Z, Zhao M, Li J, et al. Association of hypertension with both occurrence and outcome of symptomatic patients with mild intracranial atherosclerotic stenosis: a prospective higher resolution magnetic resonance imaging study[J]. J Magn Reson Imaging, 2021, 54(1): 76-88. DOI: 10.1002/jmri.27516.
[40]
Seo WK, Oh K, Suh SI, et al. Clinical significance of wall changes after recanalization therapy in acute stroke: high-resolution vessel wall imaging[J]. Stroke, 2017, 48(4): 1077-1080. DOI: 10.1161/STROKEAHA.116.015429.
[41]
Shi Z, Zhu CC, Degnan AJ, et al. Identification of high-risk plaque features in intracranial atherosclerosis: initial experience using a radiomic approach[J]. Eur Radiol, 2018, 28(9): 3912-3921. DOI: 10.1007/s00330-018-5395-1.
[42]
Zhang RY, Zhang QW, Ji AH, et al. Identification of high-risk carotid plaque with MRI-based radiomics and machine learning[J]. Eur Radiol, 2021, 31(5): 3116-3126. DOI: 10.1007/s00330-020-07361-z.
[43]
Ikebe Y, Ishimaru H, Imai H, et al. Quantitative susceptibility mapping for carotid atherosclerotic plaques: a pilot study[J]. Magn Reson Med Sci, 2020, 19(2): 135-140. DOI: 10.2463/mrms.mp.2018-0077.
[44]
Nguyen TD, Wen Y, du JW, et al. Quantitative susceptibility mapping of carotid plaques using nonlinear total field inversion: initial experience in patients with significant carotid stenosis[J]. Magn Reson Med, 2020, 84(3): 1501-1509. DOI: 10.1002/mrm.28227.
[45]
Wang CY, Zhang Y, Du JW, et al. Quantitative susceptibility mapping for characterization of intraplaque hemorrhage and calcification in carotid atherosclerotic disease[J]. J Magn Reson Imaging, 2020, 52(2): 534-541. DOI: 10.1002/jmri.27064.

PREV Clinicopathological and imaging analysis of alveolar soft part sarcoma: Five cases and literature review
NEXT Research status and clinical applications of magnetic resonance imaging to evaluate the neurovascular relationship in primary hemifacial spasm
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn