Share:
Share this content in WeChat
X
Review
Application and advances of magnetic resonance SNAP technique in craniocervical vessels
ZHANG Yukun  CHANG Peipei  LIU Na  MIAO Yanwei 

Cite this article as: Zhang YK, Chang PP, Liu N, et al. Application and advances of magnetic resonance SNAP technique in craniocervical vessels[J]. Chin J Magn Reson Imaging, 2022, 13(5): 144-147. DOI:10.12015/issn.1674-8034.2022.05.030.


[Abstract] Simultaneous non-contrast angiography and intraplaque hemorrhage (SNAP) imaging had the advantages of wide coverage, high resolution, intrinsically multi-contrast image sets and short scanning time. It was suitable for tortuous craniocervical vessels with long lesions, which provided rich diagnostic information for the examination of diseases such as atherosclerosis, arterial stenosis and arterial dissection. Its application is increasing in craniocervical artery imaging. This paper reviews technique principle, clinical applications and advances of SNAP technique in craniocervical artery.
[Keywords] magnetic resonance imaging;simultaneous non-contrast angiography and intraplaque hemorrhage imaging;craniocervical vessels;atherosclerosis;arterial dissection;magnetic resonance angiography

ZHANG Yukun   CHANG Peipei   LIU Na   MIAO Yanwei*  

Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China

Miao YW, E-mail: ywmiao716@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS The Fund Plan of the Dalian Science and Technology Innovation (2020JJ7SN075).
Received  2021-12-24
Accepted  2022-04-12
DOI: 10.12015/issn.1674-8034.2022.05.030
Cite this article as: Zhang YK, Chang PP, Liu N, et al. Application and advances of magnetic resonance SNAP technique in craniocervical vessels[J]. Chin J Magn Reson Imaging, 2022, 13(5): 144-147. DOI:10.12015/issn.1674-8034.2022.05.030.

[1]
Liu Q, Huang J, Degnan AJ, et al. Comparison of high-resolution MRI with CT angiography and digital subtraction angiography for the evaluation of middle cerebral artery atherosclerotic steno-occlusive disease[J]. Int J Cardiovasc Imaging, 2013, 29(7): 1491-1498. DOI: 10.1007/s10554-013-0237-3.
[2]
Li M, Le WJ, Tao XF, et al. Advantage in Bright-blood and Black-blood Magnetic Resonance Imaging with High-resolution for Analysis of Carotid Atherosclerotic Plaques[J]. Chin Med J (Engl), 2016, 128(18): 2478-2484. DOI: 10.4103/0366-6999.164933.
[3]
Lehman VT, Brinjikji W, Kallmes DF, et al. Clinical interpretation of high-resolution vessel wall MRI of intracranial arterial diseases[J]. Brit J Radiol, 2016, 89(1067): 20160496. DOI: 10.1259/bjr.20160496.
[4]
Wang J, Ferguson MS, Balu N, et al. Improved carotid intraplaque hemorrhage imaging using a slab-selective phase-sensitive inversion-recovery (SPI) sequence[J]. Magn Reson Med, 2010, 64(5): 1332-1340. DOI: 10.1002/mrm.22539.
[5]
Chen S, Ning J, Zhao X, et al. Fast simultaneous noncontrast angiography and intraplaque hemorrhage (fSNAP) sequence for carotid artery imaging[J]. Magn Reson Med, 2017, 77(2): 753-758. DOI: 10.1002/mrm.26111.
[6]
Kellman P, Arai AE, Mcveigh ER, et al. Phase-sensitive inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement[J]. Magn Reson Med, 2002, 47(2): 372-383. DOI: 10.1002/mrm.10051.
[7]
Chen S, Zhao H, Li J, et al. Evaluation of carotid atherosclerotic plaque surface characteristics utilizing simultaneous noncontrast angiography and intraplaque hemorrhage (SNAP) technique[J]. J Magn Reson Imaging, 2018, 47(3): 634-639. DOI: 10.1002/jmri.25815.
[8]
Wang J, Bornert P, Zhao H, et al. Simultaneous noncontrast angiography and intraplaque hemorrhage (SNAP) imaging for carotid atherosclerotic disease evaluation[J]. Magn Reson Med, 2013, 69(2): 337-345. DOI: 10.1002/mrm.24254.
[9]
Liu J, Sun J, Balu N, et al. Semiautomatic carotid intraplaque hemorrhage volume measurement using 3D carotid MRI[J]. Magn Reson Imaging, 2019, 50(4): 1055-1062. DOI: 10.1002/jmri.26698.
[10]
Liu H, Sun J, Hippe DS, et al. Improved carotid lumen delineation on non-contrast MR angiography using SNAP (Simultaneous Non-Contrast Angiography and Intraplaque Hemorrhage) imaging[J]. Magn Reson Imaging, 2019, 62: 87-93. DOI: 10.1016/j.mri.2019.06.012.
[11]
Shu H, Sun J, Hatsukami TS, et al. Simultaneous noncontrast angiography and intraplaque hemorrhage (SNAP) imaging: Comparison with contrast-enhanced MR angiography for measuring carotid stenosis[J]. J Magn Reson Imaging, 2017, 46(4): 1045-1052. DOI: 10.1002/jmri.25653.
[12]
Derek GL. Ultra-low-dose, time-resolved contrast-enhanced magnetic resonance angiography of the carotid arteries at 3.0 tesla[J]. Invest Radiol, 2009, 44(4): 207-217. DOI: 10.1097/RLI.0b013e31819ca048.
[13]
Saam T, Hetterich H, Hoffmann V, et al. Meta-analysis and systematic review of the predictive value of carotid plaque hemorrhage on cerebrovascular events by magnetic resonance imaging[J]. Am Coll Cardiol, 2013, 62(12): 1081-1091. DOI: 10.1016/j.jacc.2013.06.015.
[14]
Underhill HR, Yuan C, Yarnykh VL, et al. Arterial remodeling in [corrected] subclinical carotid artery disease[J]. JACC Cardiovasc Imaging, 2009, 2(12): 1381-1389. DOI: 10.1016/j.jcmg.2009.08.007.
[15]
Gupta A, Baradaran H, Schweitzer AD, et al. Carotid plaque MRI and stroke risk: a systematic review and meta-analysis[J]. Stroke, 2013, 44(11): 3071-3077. DOI: 10.1161/STROKEAHA.113.002551.
[16]
Hiroyuki H. Correlation of thin fibrous cap possessing adipophilin-positive macrophages and intraplaque hemorrhage with high clinical risk for carotid endarterectomy[J]. J Neurosurg, 2011, 114(4): 1080-1087. DOI: 10.3171/2010.8.JNS10423.
[17]
Li D, Zhao H, Chen X, et al. Identification of intraplaque haemorrhage in carotid artery by simultaneous non-contrast angiography and intraPlaque haemorrhage (SNAP) imaging: a magnetic resonance vessel wall imaging study[J]. Eur Radiol, 2018, 28(4): 1681-1686. DOI: 10.1007/s00330-017-5096-1.
[18]
Li D, Qiao H, Han Y, et al. Histological validation of simultaneous non-contrast angiography and intraplaque hemorrhage imaging (SNAP) for characterizing carotid intraplaque hemorrhage[J]. Eur Radiol, 2021, 31(5): 3106-3115. DOI: 10.1007/s00330-020-07352-0.
[19]
Wang K, Jia L, Wang YL, et al. The preliminary study of quantitative analysis intraplaque hemorrhage of carotid atherosclerotic plaque by MR SNAP sequence[J]. Pract Radiol, 2018, 34(8): 1172-1175, 1182. DOI: 10.3969/j.issn.1002-1671.2018.08.005.
[20]
Ota H, Yarnykh, VL, Ferguson MS, et al. Carotid intraplaque hemorrhage imaging at 3.0-T MR imaging: comparison of the diagnostic performance of three T1-weighted sequences[J]. Radiology, 2010, 254(2): 551-563. DOI: 10.1148/radiol.09090535.
[21]
Fan ZY, Yu W, Xie YB, et al. Multi-contrast atherosclerosis characterization (MATCH) of carotid plaque with a single 5-min scan: technical development and clinical feasibility[J]. Cardiovasc Magn Reson, 2014, 16. DOI: 10.1186/s12968-014-0053-5.
[22]
Wang X, Sun J, Zhao X, et al. Ipsilateral plaques display higher T1 signals than contralateral plaques in recently symptomatic patients with bilateral carotid intraplaque hemorrhage[J]. Atherosclerosis, 2017, 25: 778-785. DOI: 10.1016/j.atherosclerosis.2017.01.001.
[23]
Qi H, Sun J, Qiao H, et al. Carotid Intraplaque Hemorrhage Imaging with Quantitative Vessel Wall T1 Mapping: Technical Development and Initial Experience[J]. Radiology, 2018, 287(1): 276-284. DOI: 10.1148/radiol.2017170526.
[24]
Kim M J, Kwak HS, Hwang SB, et al. One-step evaluation of intraplaque hemorrhage in the carotid artery and vertebrobasilar artery using simultaneous non-contrast angiography and intraplaque hemorrhage[J]. Eur J Radiol, 2021, 141: 109824. DOI: 10.1016/j.ejrad.2021.109824.
[25]
Lee UY, Kwak HS. Evaluation of Plaque Vulnerability via Combination of Hemodynamic Analysis and Simultaneous Non-Contrast Angiography and Intraplaque Hemorrhage (SNAP) Sequence for Carotid Intraplaque Hemorrhage[J]. Pers Med, 2021, 11(9): 856. DOI: 10.3390/jpm11090856.
[26]
Prabhakaran S, Rundek T, Ramas R, et al. Carotid plaque surface irregularity predicts ischemic stroke: the northern Manhattan study[J]. Stroke, 2006, 37(11): 2696-2701. DOI: 10.1161/01.STR.0000244780.82190.a4.
[27]
Wahlgren CM, Zheng W, Shaalan W, et al. Human carotid plaque calcification and vulnerability. Relationship between degree of plaque calcification, fibrous cap inflammatory gene expression and symptomatology[J]. Cerebrovasc Dis, 2009, 27(2): 193-200. DOI: 10.1159/000189204.
[28]
Zhang Q, Qiao H, Dou J, et al. Plaque components segmentation in carotid artery on simultaneous non-contrast angiography and intraplaque hemorrhage imaging using machine learning[J]. Magn Reson Imaging, 2019, 60: 93-100. DOI: 10.1016/j.mri.2019.04.001.
[29]
Wei H, Zhang M, Li Y, et al. Evaluation of 3D multi-contrast carotid vessel wall MRI: a comparative study[J]. Quant Imaging Med Surg, 2020, 10(1): 269-282. DOI: 10.21037/qims.2019.09.11.
[30]
Wang K, Chen H, Ma JX, et al. Evaluation of magnetic resonance SNAP protocol in the diagnosis of carotid atherosclerotic plaque[J]. Diagnostic Imaging and Interventional Radiology, 2018, 27(1): 40-46. DOI: 10.3969/j.issn.1005-8001.2018.01.007.
[31]
Zhou Y, Wang L, Zhang JR, et al. Angioplasty and stenting for severe symptomatic atherosclerotic stenosis of intracranial vertebrobasilar artery[J]. J Clin Neurosci, 2019, 63: 17-21. DOI: 10.1016/j.jocn.2019.02.017.
[32]
Markus HS, Levi C, King A, et al. Antiplatelet Therapy vs Anticoagulation Therapy in Cervical Artery Dissection: The Cervical Artery Dissection in Stroke Study (CADISS) Randomized Clinical Trial Final Results[J]. JAMA Neurol, 2019, 76(6): 657-664. DOI: 10.1001/jamaneurol.2019.0072.
[33]
Tang M, Gao JL, Gao J, et al. Evaluating intracranial artery dissection by using three-dimensional simultaneous non-contrast angiography and intra-plaque hemorrhage high-resolution magnetic resonance imaging: a retrospective study[J]. Acta Radiol, 2021, 63(3): 401-409. DOI: 10.1177/0284185121992235.
[34]
Debette S, Leys D. Cervical-artery dissections: predisposing factors, diagnosis, and outcome. Lancet Neurol[J]. 2009, 8(7): 668-678. DOI: 10.1016/S1474-4422(09)70084-5.
[35]
Tang M, Zhang X, Zhang DS, et al. Evaluating diagnostic value of 3D-SNAP high resolution magnetic resonance in intracranial artery dissection[J]. Chin J Magn Reson Imaging, 2019, 10(2): 105-109. DOI: 10.12015/issn.1674-8034.2019.02.006.
[36]
Lu Y, Huang RJ, Li YG. Comparison of simultaneous non-contrast angiography and intraplaque hemorrhage imaging with conventional black blood technique in the high resolution craniocervical artery imaging[J]. Radiol Practice, 2019, 34(8): 863-868. DOI: 10.13609/j.cnki.1000-0313.2019.08.007.
[37]
Huang RJ, Lu Y, Zhu M, et al. Simultaneous non-contrast angiography and intraplaque haemorrhage (SNAP) imaging for cervical artery dissections[J]. Clin Radiol, 2019, 74(10): 817.e1-817.e7. DOI: 10.1016/j.crad.2019.06.018.
[38]
Wang J, Guan M, Yamada K, et al. In Vivo Validation of Simultaneous Non-Contrast Angiography and intraPlaque Hemorrhage (SNAP) Magnetic Resonance Angiography: An Intracranial Artery Study[J]. PLoS One, 2016, 11(2): e0149130. DOI: 10.1371/journal.pone.0149130.
[39]
Zhang Q, Chen Z, Chen S, et al. Angiographic contrast mechanism comparison between Simultaneous Non-contrast Angiography and intraPlaque hemorrhage (SNAP) sequence and Time of Flight (TOF) sequence for intracranial artery[J]. Magn Reson Imaging, 2020, 66: 199-207. DOI: 10.1016/j.mri.2019.09.001.
[40]
Chen YL, He L, Chen HJ, et al. Blood Vessel and Intraplaque Hemorrhage Simultaneous Imaging Sequence in Evaluation of the Integrity of Willis Circle[J]. Chin J Med Imaging, 2018, 26(4): 241-245, 251. DOI: 10.3969/j.issn.1005-5185.2018.04.001.
[41]
Gould A, Chen Z, Geleri DB, et al. Vessel length on SNAP MRA and TOF MRA is a potential imaging biomarker for brain blood flow[J]. Magn Reson Imaging, 2021, 79: 20-27. DOI: 10.1016/j.mri.2021.02.012.
[42]
Xiong Y, Zhang Z, He L, et al. Intracranial simultaneous noncontrast angiography and intraplaque hemorrhage (SNAP) MRA: Analyzation, optimization, and extension for dynamic MRA[J]. Magn Reson Med, 2019, 82(5): 1646-1659. DOI: 10.1002/mrm.27855.
[43]
Chen Z, Zhou Z, Qi H, et al. A novel sequence for simultaneous measurement of whole-brain static and dynamic MRA, intracranial vessel wall image, and T1-weighted structural brain MRI[J]. Magn Reson Med, 2021, 85(1): 316-325. DOI: 10.1002/mrm.28431.
[44]
Hong KS, Dougherty L. k-space weighted image contrast (KWIC) for contrast manipulation in projection reconstruction MRI[J]. Magn Reson Med, 2000, 44(6): 825-832. DOI: 10.1016/j.neurobiolaging.2019.02.027.
[45]
Li C. Quantitative assessment of the intracranial vasculature in an older adult population using iCafe[J]. Neurobiol Aging, 2019, 79: 59-65. DOI: 10.1016/j.neurobiolaging.2019.02.027.
[46]
Xiong Y, Ji L, He L, et al. Effects of Levodopa Therapy on Cerebral Arteries and Perfusion in Parkinson's Disease Patients[J]. J Magn Reson Imaging, 2021, 55(3): 943-953. DOI: 10.1002/jmri.27903.

PREV Research status and clinical applications of magnetic resonance imaging to evaluate the neurovascular relationship in primary hemifacial spasm
NEXT MRI research progress of temporomandibular joint disorder
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn