Share:
Share this content in WeChat
X
Review
Research progress of multimodality MRI in the diagnosis and treatment of intrahepatic mass-forming cholangiocarcinoma
CHEN Shuang  ZHANG Hongmei 

Cite this article as: Chen S, Zhang HM. Research progress of multimodality MRI in the diagnosis and treatment of intrahepatic mass-forming cholangiocarcinoma[J]. Chin J Magn Reson Imaging, 2022, 13(5): 158-161. DOI:10.12015/issn.1674-8034.2022.05.034.


[Abstract] Intrahepatic cholangiocarcinoma (ICC) is the primary malignant tumor of liver, second only to hepatocellular carcinoma (HCC), and its incidence increases gradually in recent years. ICC can be divided into mass-forming, periductal-infiltrating, and intraductal-growing patterns according to their gross morphology and growth pattern and intrahepatic mass-forming cholangiocarcinoma is most common. As the treatment and prognosis are different from other liver malignancies, early and accurate diagnosis is of great significance for optimal treatment. MRI is currently the preferred imaging method for diagnosis, staging, and prognosis of ICC before treatment. In particular, multimodal MRI technology can reflect the changes of tumor tissue microstructure by integrating the advantages of various modes, which is helpful for the qualitative diagnosis of tumor and the evaluation of tumor microenvironment, thus indirectly reflecting a series of prognostic characteristics such as the degree of malignancy and the scope of invasion of tumor. The commonly used multimodal MRI techniques including diffusion-weighted imaging, dynamic contrast enhanced magnetic resonance imaging. In this article, the different techniques of multimodal MRI and their research progress in ICC are reviewed.
[Keywords] multimodal magnetic resonance imaging;diffusion weighted imaging;dynamic contrast enhanced magnetic resonance imaging;intrahepatic mass-forming cholangiocarcinoma;diagnosis;prognosis

CHEN Shuang   ZHANG Hongmei*  

Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China

Zhang HM, E-mail: 13581968865@163.com

Conflicts of interest   None.

Received  2021-09-21
Accepted  2022-04-11
DOI: 10.12015/issn.1674-8034.2022.05.034
Cite this article as: Chen S, Zhang HM. Research progress of multimodality MRI in the diagnosis and treatment of intrahepatic mass-forming cholangiocarcinoma[J]. Chin J Magn Reson Imaging, 2022, 13(5): 158-161. DOI:10.12015/issn.1674-8034.2022.05.034.

[1]
Sarcognato S, Sacchi D, Fassan M, et al. Cholangiocarcinoma[J]. Pathologica, 2021, 113(3): 158-169. DOI: 10.32074/1591-951X-252.
[2]
Banales JM, Marin JJG, Lamarca A, et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and management[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(9): 557-588. DOI: 10.1038/s41575-020-0310-z.
[3]
Chiow SM, Khoo HW, Low JK, et al. Imaging mimickers of cholangiocarcinoma: a pictorial review[J]. Abdom Radiol (NY), 2022, 47(3): 981-997. DOI: 10.1007/s00261-021-03399-9.
[4]
Seo N, Kim DY, Choi JY. Cross-sectional imaging of intrahepatic cholangiocarcinoma: development, growth, spread, and prognosis[J]. AJR Am J Roentgenol, 2017, 209(2): W64-W75. DOI: 10.2214/AJR.16.16923.
[5]
Machairas N, Lang H, Jayant K, et al. Intrahepatic cholangiocarcinoma: limitations for resectability, current surgical concepts and future perspectives[J]. Eur J Surg Oncol, 2020, 46(5): 740-746. DOI: 10.1016/j.ejso.2020.01.028.
[6]
Li Q, Wei Y, Che F, et al. Multiparametric magnetic resonance imaging improves the prognostic outcomes in patients with intrahepatic cholangiocarcinoma after curative-intent resection[J]. Front Oncol, 2022, 12: 756726. DOI: 10.3389/fonc.2022.756726.
[7]
Tsilimigras DI, Sahara K, Wu L, et al. Very early recurrence after liver resection for intrahepatic cholangiocarcinoma[J]. JAMA Surg, 2020, 155(9): 823. DOI: 10.1001/jamasurg.2020.1973.
[8]
Entezari P, Riaz A. Intrahepatic cholangiocarcinoma[J]. Semin Intervent Radiol, 2020, 37(5): 475-483. DOI: 10.1055/s-0040-1719188.
[9]
Granata V, Grassi R, Fusco R, et al. Intrahepatic cholangiocarcinoma and its differential diagnosis at MRI: how radiologist should assess MR features[J]. La Radiol Med, 2021, 126(12): 1584-1600. DOI: 10.1007/s11547-021-01428-7.
[10]
Kim YY, Yeom SK, Shin H, et al. Clinical staging of mass-forming intrahepatic cholangiocarcinoma: computed tomography versus magnetic resonance imaging[J]. Hepatol Commun, 2021, 5(12): 2009-2018. DOI: 10.1002/hep4.1774.
[11]
Saleh M, Virarkar M, Bura V, et al. Intrahepatic cholangiocarcinoma: pathogenesis, current staging, and radiological findings[J]. Abdom Radiol (NY), 2020, 45(11): 3662-3680. DOI: 10.1007/s00261-020-02559-7.
[12]
Sha M, Jeong S, Qiu BJ, et al. Isolation of cancer-associated fibroblasts and its promotion to the progression of intrahepatic cholangiocarcinoma[J]. Cancer Med, 2018, 7(9): 4665-4677. DOI: 10.1002/cam4.1704.
[13]
Kova\u010d JD, Jankovi\u0107 A, \u0110iki\u0107-Rom A, et al. Imaging spectrum of intrahepatic mass-forming cholangiocarcinoma and its mimickers: how to differentiate them using MRI [J]. Curr Oncol, 2022, 29(2): 698-723. DOI: 10.3390/curroncol29020061.
[14]
Rhee H, Choi SH, Park JH, et al. Preoperative magnetic resonance imaging-based prognostic model for mass-forming intrahepatic cholangiocarcinoma[J]. Liver Int, 2022, 42(4): 930-941. DOI: 10.1111/liv.15196.
[15]
Mao YF, Zhu Y, Qiu YD, et al. Predicting peritumoral Glisson's sheath invasion of intrahepatic cholangiocarcinoma with preoperative CT imaging[J]. Quant Imaging Med Surg, 2019, 9(2): 219-229. DOI: 10.21037/qims.2018.12.11.
[16]
Kim DH, Choi SH, Park SH, et al. The Liver Imaging Reporting and Data System tumor-in-vein category: a systematic review and meta-analysis[J]. Eur Radiol, 2021, 31(4): 2497-2506. DOI: 10.1007/s00330-020-07282-x.
[17]
Wang YXJ, Huang H, Zheng CJ, et al. Diffusion-weighted MRI of the liver: challenges and some solutions for the quantification of apparent diffusion coefficient and intravoxel incoherent motion[J]. Am J Nucl Med Mol Imaging, 2021, 11(2): 107-142.
[18]
Surov A, Pech M, Omari J, et al. Diffusion-weighted imaging reflects tumor grading and microvascular invasion in hepatocellular carcinoma[J]. Liver Cancer, 2021, 10(1): 10-24. DOI: 10.1159/000511384.
[19]
Messina C, Bignone R, Bruno A, et al. Diffusion-weighted imaging in oncology: an update[J]. Cancers, 2020, 12(6): 1493. DOI: 10.3390/cancers12061493.
[20]
Park HJ, Kim YK, Park MJ, et al. Small intrahepatic mass-forming cholangiocarcinoma: target sign on diffusion-weighted imaging for differentiation from hepatocellular carcinoma[J]. Abdom Imaging, 2013, 38(4): 793-801. DOI: 10.1007/s00261-012-9943-x.
[21]
Fattach HE, Dohan A, Guerrache Y, et al. Intrahepatic and hilar mass-forming cholangiocarcinoma: qualitative and quantitative evaluation with diffusion-weighted MR imaging[J]. Eur J Radiol, 2015, 84(8): 1444-1451. DOI: 10.1016/j.ejrad.2015.05.003.
[22]
Kim R, Lee JM, Shin CI, et al. Differentiation of intrahepatic mass-forming cholangiocarcinoma from hepatocellular carcinoma on gadoxetic acid-enhanced liver MR imaging[J]. Eur Radiol, 2016, 26(6): 1808-1817. DOI: 10.1007/s00330-015-4005-8.
[23]
Chang AI, Kim YK, Min JH, et al. Differentiation between inflammatory myofibroblastic tumor and cholangiocarcinoma manifesting as target appearance on gadoxetic acid-enhanced MRI[J]. Abdom Radiol (NY), 2019, 44(4): 1395-1406. DOI: 10.1007/s00261-018-1847-y.
[24]
Lewis S, Besa C, Wagner M, et al. Prediction of the histopathologic findings of intrahepatic cholangiocarcinoma: qualitative and quantitative assessment of diffusion-weighted imaging[J]. Eur Radiol, 2018, 28(5): 2047-2057. DOI: 10.1007/s00330-017-5156-6.
[25]
Yamada S, Morine Y, Imura S, et al. Prognostic prediction of apparent diffusion coefficient obtained by diffusion-weighted MRI in mass-forming intrahepatic cholangiocarcinoma[J]. J Hepatobiliary Pancreat Sci, 2020, 27(7): 388-395. DOI: 10.1002/jhbp.732.
[26]
Lee JS, Kim SH, Kang TW, et al. Mass-forming intrahepatic cholangiocarcinoma: diffusion-weighted imaging as a preoperative prognostic marker[J]. Radiology, 2016, 281(1): 119-128. DOI: 10.1148/radiol.2016151781.
[27]
Sirica AE, Gores GJ. Desmoplastic stroma and cholangiocarcinoma: clinical implications and therapeutic targeting[J]. Hepatology, 2014, 59(6): 2397-2402. DOI: 10.1002/hep.26762.
[28]
Zhou Y, Wang XL, Xu C, et al. Mass-forming intrahepatic cholangiocarcinoma: can diffusion-weighted imaging predict microvascular invasion?[J]. J Magn Reson Imaging, 2019, 50(1): 315-324. DOI: 10.1002/jmri.26566.
[29]
Tsilimigras DI, Ejaz A, Cloyd J, et al. Tumor necrosis impacts prognosis of patients undergoing resection for T1 intrahepatic cholangiocarcinoma[J/OL]. Ann Surg Oncol. 2022. (2022-3-17)[2022-4-10]. https://link.springer.com/article/10.1245/s10434-022-11462-y. DOI: 10.1245/s10434-022-11462-y.
[30]
Sheng R, Huang X, Jin K, et al. Contrast-enhanced MRI could predict response of systemic therapy in advanced intrahepatic cholangiocarcinoma[J/OL]. Eur Radiol. 2022. (2022-3-17)[2022-4-10]. https://link.springer.com/article/10.1007/s00330-022-08679-6. DOI: 10.1007/s00330-022-08679-6.
[31]
Rimola J, Forner A, Sapena V, et al. Performance of gadoxetic acid MRI and diffusion-weighted imaging for the diagnosis of early recurrence of hepatocellular carcinoma[J]. Eur Radiol, 2020, 30(1): 186-194. DOI: 10.1007/s00330-019-06351-0.
[32]
Hwang J, Kim YK, Park MJ, et al. Differentiating combined hepatocellular and cholangiocarcinoma from mass-forming intrahepatic cholangiocarcinoma using gadoxetic acid-enhanced MRI[J]. J Magn Reson Imaging, 2012, 36(4): 881-889. DOI: 10.1002/jmri.23728.
[33]
Choi SH, Lee SS, Kim SY, et al. Intrahepatic cholangiocarcinoma in patients with cirrhosis: differentiation from hepatocellular carcinoma by using gadoxetic acid-enhanced MR imaging and dynamic CT[J]. Radiology, 2017, 282(3): 771-781. DOI: 10.1148/radiol.2016160639.
[34]
Jin KP, Sheng RF, Yang C, et al. Combined arterial and delayed enhancement patterns of MRI assist in prognostic prediction for intrahepatic mass-forming cholangiocarcinoma (IMCC)[J]. Abdom Radiol (NY), 2022, 47(2): 640-650. DOI: 10.1007/s00261-021-03292-5.
[35]
Xu J, Igarashi S, Sasaki M, et al. Intrahepatic cholangiocarcinomas in cirrhosis are hypervascular in comparison with those in normal livers[J]. Liver Int, 2012, 32(7): 1156-1164. DOI: 10.1111/j.1478-3231.2012.02783.x.
[36]
Huang B, Wu L, Lu XY, et al. Small intrahepatic cholangiocarcinoma and hepatocellular carcinoma in cirrhotic livers may share similar enhancement patterns at multiphase dynamic MR imaging[J]. Radiology, 2016, 281(1): 150-157. DOI: 10.1148/radiol.2016151205.
[37]
Kang Y, Lee JM, Kim SH, et al. Intrahepatic mass-forming cholangiocarcinoma: enhancement patterns on gadoxetic acid-enhanced MR images[J]. Radiology, 2012, 264(3): 751-760. DOI: 10.1148/radiol.12112308.
[38]
Zhang XH, Huo L, Liu CF, et al. Arterial hyperenhancement of small intrahepatic cholangiocarcinomas correlates with microvessel counts and patient survival[J]. HPB, 2020, 22(8): 1197-1205. DOI: 10.1016/j.hpb.2019.11.008.
[39]
Sheng RF, Zeng MS, Rao SX, et al. MRI of small intrahepatic mass-forming cholangiocarcinoma and atypical small hepatocellular carcinoma (≤3 cm) with cirrhosis and chronic viral hepatitis: a comparative study[J]. Clin Imaging, 2014, 38(3): 265-272. DOI: 10.1016/j.clinimag.2013.12.022.
[40]
Min JH, Kim YK, Choi SY, et al. Intrahepatic mass-forming cholangiocarcinoma: arterial enhancement patterns at MRI and prognosis[J]. Radiology, 2019, 290(3): 691-699. DOI: 10.1148/radiol.2018181485.
[41]
Teraoku H, Morine Y, Uyama N, et al. Role of central hypo-enhancement in the hepatic arterial phase of dynamic computed tomography in patients with mass-forming intrahepatic cholangiocarcinoma[J]. World J Surg, 2020, 44(7): 2350-2358. DOI: 10.1007/s00268-020-05456-8.
[42]
Min JH, Lee MW, Park HS, et al. LI-RADS version 2018 targetoid appearances on gadoxetic acid-enhanced MRI: interobserver agreement and diagnostic performance for the differentiation of HCC and non-HCC malignancy[J/OL]. AJR Am J Roentgenol. 2022. (2022-3-23)[2022-4-10]. https://www.ajronline.org/doi/10.2214/AJR.22.27380. DOI: 10.2214/AJR.22.27380.
[43]
Li XQ, Wang X, Zhao DW, et al. Application of Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI) in hepatocellular carcinoma[J]. World J Surg Oncol, 2020, 18(1): 219. DOI: 10.1186/s12957-020-01996-4.
[44]
Murakami T, Sofue K, Hori M. Diagnosis of hepatocellular carcinoma using Gd-EOB-DTPA MR imaging[J]. Magn Reson Med Sci, 2022, 21(1): 168-181. DOI: 10.2463/mrms.rev.2021-0031.
[45]
Tseng TY, Tseng JH, Huang BS, et al. Risk of nephrogenic systemic fibrosis in patients with impaired renal function undergoing fixed-dose gadoxetic acid-enhanced magnetic resonance imaging[J]. Abdom Radiol, 2021, 46(8): 3995-4001. DOI: 10.1007/s00261-021-03045-4.
[46]
Zhou N, Hu AN, Shi ZH, et al. Inter-observer agreement of computed tomography and magnetic resonance imaging on gross tumor volume delineation of intrahepatic cholangiocarcinoma: an initial study[J]. Quant Imaging Med Surg, 2021, 11(2): 579-585. DOI: 10.21037/qims-19-1093.
[47]
Jeong HT, Kim MJ, Chung YE, et al. Gadoxetate disodium-enhanced MRI of mass-forming intrahepatic cholangiocarcinomas: imaging-histologic correlation[J]. AJR Am J Roentgenol, 2013, 201(4): W603-W611. DOI: 10.2214/AJR.12.10262.
[48]
Koh J, Chung YE, Nahm JH, et al. Intrahepatic mass-forming cholangiocarcinoma: prognostic value of preoperative gadoxetic acid-enhanced MRI[J]. Eur Radiol, 2016, 26(2): 407-416. DOI: 10.1007/s00330-015-3846-5.
[49]
Chong YS, Kim YK, Lee MW, et al. Differentiating mass-forming intrahepatic cholangiocarcinoma from atypical hepatocellular carcinoma using gadoxetic acid-enhanced MRI[J]. Clin Radiol, 2012, 67(8): 766-773. DOI: 10.1016/j.crad.2012.01.004.
[50]
Min JH, Kim YK, Choi SY, et al. Differentiation between cholangiocarcinoma and hepatocellular carcinoma with target sign on diffusion-weighted imaging and hepatobiliary phase gadoxetic acid-enhanced MR imaging: classification tree analysis applying capsule and septum[J]. Eur J Radiol, 2017, 92: 1-10. DOI: 10.1016/j.ejrad.2017.04.008.
[51]
Asayama Y, Yoshimitsu K, Irie H, et al. Delayed-phase dynamic CT enhancement as a prognostic factor for mass-forming intrahepatic cholangiocarcinoma[J]. Radiology, 2006, 238(1): 150-155. DOI: 10.1148/radiol.2381041765.
[52]
Ippolito D, Maino C, Pecorelli A, et al. Influence of injection rate in determining the development of artifacts during the acquisition of dynamic arterial phase in Gd-EOB-DTPA MRI studies[J]. MAGMA, 2021, 34(1): 133-140. DOI: 10.1007/s10334-020-00857-1.
[53]
Chen BB, Lin ZZ, Shao YY, et al. Early changes in DCE-MRI biomarkers may predict survival outcomes in patients with advanced hepatocellular carcinoma after sorafenib failure: two prospective phase Ⅱ trials[J]. Cancers, 2021, 13(19): 4962. DOI: 10.3390/cancers13194962.
[54]
Jarnagin WR, Schwartz LH, Gultekin DH, et al. Regional chemotherapy for unresectable primary liver cancer: results of a phase Ⅱ clinical trial and assessment of DCE-MRI as a biomarker of survival[J]. Ann Oncol, 2009, 20(9): 1589-1595. DOI: 10.1093/annonc/mdp029.
[55]
Konstantinidis IT, Do RKG, Gultekin DH, et al. Regional chemotherapy for unresectable intrahepatic cholangiocarcinoma: a potential role for dynamic magnetic resonance imaging as an imaging biomarker and a survival update from two prospective clinical trials[J]. Ann Surg Oncol, 2014, 21(8): 2675-2683. DOI: 10.1245/s10434-014-3649-y.

PREV Research progress on magnetic resonance imaging biomarkers in predicting the risk of postoperative recurrence with hepatocellular carcinoma
NEXT Application of radiomics in spinal diseases
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn