Share:
Share this content in WeChat
X
Investigation Reseach
Resting-state fMRI study of vulnerable brain regions in patients with primary insomnia: A Meta-analysis based on activation likelihood estimation
ZHANG Qin  HOU Yongzhe  ZHANG Wei  WANG Lin 

Cite this article as: Zhang Q, Hou YZ, Zhang W, et al. Resting-state fMRI study of vulnerable brain regions in patients with primary insomnia: A Meta-analysis based on activation likelihood estimation[J]. Chin J Magn Reson Imaging, 2022, 13(6): 88-93. DOI:10.12015/issn.1674-8034.2022.06.017.


[Abstract] Objective To examine the use of resting state functional magnetic resonance imaging (rs-fMRI) technology in the study of the more consistent impaired brain regions in patients with primary insomnia (PI), in order to uncover the potential neural mechanism of PI brain injury.Materials and Methods Before April 7 2022, the literature on changes in brain function in patients with PI was searched using regional honogeneity (ReHo) and amplitude of low-frequency fluctuation/fraction amplitude of low-frequency fluctuation/dynamic amplitude of low-frequency fluctuation (ALFF/fALFF/dALFF) analytic methods. The activation likelihood estimation (ALE) method was utilized to integrate and assess brain regions with aberrant spontaneous neural activity in patients with PI compared to healthy controls (HCs), based on tight exclusion criteria.Results A total of 19 literatures and 20 studies (706 instances of PI and 681 cases of HCs) were included in the results. Combining ReHo and ALFF/fALFF/dALFF data element analysis, the results revealed that the activity of the left fusiform gyrus and parahippocampal gyrus in PI patients was higher than in HCs (voxels were 3640 and 928 mm3, respectively, P<0.05), and no brain region had lower activity. The results of ALFF data element analysis alone revealed that the activity of the left fusiform gyrus in PI patients was higher than in HCs (voxel was 1360 mm3, P<0.05), and no brain region had lower activity. The results of ReHo data element analysis alone revealed areas of the brain where PI patients do not exhibit any increased or decreased brain regions relative to HCs.Conclusions In this paper, an ALE meta-analysis discovered that the more consistent susceptible brain regions in PI patients were the left fusiform gyrus and parahippocampal gyrus, which is helpful in understanding PI brain injury from a neuropathological standpoint.
[Keywords] resting state functional magnetic resonance imaging;primary insomnia;Meta analysis;activation likelihood estimation;spontaneous neural activity;impaired brain regions

ZHANG Qin1, 2   HOU Yongzhe1   ZHANG Wei2   WANG Lin2*  

1 First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China

2 Gansu Cancer Clinical Medical Research Center of Integrated Traditional Chinese and Western Medicine/Department of Radiology, Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China

Wang L, E-mail: 836362298@qq.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Gansu Science and Technology Support Program (No. 18JR2FA001); Major Project of Education Department in Gansu Province (No. LCCX2021001).
Received  2022-04-18
Accepted  2022-06-06
DOI: 10.12015/issn.1674-8034.2022.06.017
Cite this article as: Zhang Q, Hou YZ, Zhang W, et al. Resting-state fMRI study of vulnerable brain regions in patients with primary insomnia: A Meta-analysis based on activation likelihood estimation[J]. Chin J Magn Reson Imaging, 2022, 13(6): 88-93. DOI:10.12015/issn.1674-8034.2022.06.017.

[1]
Xue T, Wu X, Chen S, et al. The efficacy and safety of dual orexin receptor antagonists in primary insomnia: A systematic review and network meta-analysis[J]. Sleep Med Rev, 2022, 61: 101573. DOI: 10.1016/j.smrv.2021.101573.
[2]
Shi L, Chen SJ, Ma MY, et al. Sleep disturbances increase the risk of dementia: a systematic review and meta-analysis[J]. Sleep Med Rev, 2018, 40: 4-16. DOI: 10.1016/j.smrv.2017.06.010.
[3]
Hargens TA, Kaleth AS, Edwards ES, et al. Association between sleep disorders, obesity, and exercise: a review[J]. Nature and Science of Sleep, 2013, 5: 27. DOI: 10.2147/NSS.S34838.
[4]
Xu F, Chen ZY. Research Progress of Insomnia Treated by TCM[J]. Chinese Journal of Library and Information Science for Traditional Chinese Medicine, 2022, 46(1): 72-76. DOI: 10.3969/j.issn.2095-5707.2022.01.017.
[5]
Li C, Ma X, Dong M, et al. Abnormal spontaneous regional brain activity in primary insomnia: a resting-state functional magnetic resonance imaging study[J]. Neuropsych Dis Treat, 2016, 12: 1371. DOI: 10.2147/NDT.S109633.
[6]
Dai XJ, Nie X, Liu X, et al. Gender differences in regional brain activity in patients with chronic primary insomnia: evidence from a resting-state fMRI study[J]. J Clin Sleep Med, 2016, 12(3): 363-374. DOI: 10.5664/jcsm.5586.
[7]
Ran Q, Chen J, Li C, et al. Abnormal amplitude of low-frequency fluctuations associated with rapid-eye movement in chronic primary insomnia patients[J]. Oncotarget, 2017, 8(49): 84877. DOI: 10.18632/oncotarget.17921.
[8]
Zhou F, Huang S, Zhuang Y, et al. Frequency-dependent changes in local intrinsic oscillations in chronic primary insomnia: a study of the amplitude of low-frequency fluctuations in the resting state[J]. NeuroImage: Clinical, 2017, 15: 458-465. DOI: 10.1016/j.nicl.2016.05.011.
[9]
Meng X, Zheng J, Liu Y, et al. Increased dynamic amplitude of low frequency fluctuation in primary insomnia[J]. Frontiers in neurology, 2020: 609. DOI: 10.3389/fneur.2020.00609.
[10]
Wang YK, Shi XH, Wang YY, et al. Evaluation of the age-related and gender-related differences in patients with primary insomnia by fractional amplitude of low-frequency fluctuation: A resting-state functional magnetic resonance imaging study[J]. Medicine, 2020, 99(3): e18786. DOI: 10.1097/MD.0000000000018786.
[11]
Dai XJ, Peng DC, Gong HH, et al. Altered intrinsic regional brain spontaneous activity and subjective sleep quality in patients with chronic primary insomnia: a resting-state fMRI study[J]. Neuropsych Dis Treat, 2014, 10: 2163. DOI: 10.2147/NDT.S69681.
[12]
Wang T, Li S, Jiang G, et al. Regional homogeneity changes in patients with primary insomnia[J]. Eur Radiol, 2016, 26(5): 1292-1300. DOI: 10.1007/s00330-015-3960-4.
[13]
Zhang Y, Zhang Z, Wang Y, et al. Dysfunctional beliefs and attitudes about sleep are associated with regional homogeneity of left inferior occidental gyrus in primary insomnia patients: a preliminary resting state functional magnetic resonance imaging study[J]. Sleep Med, 2021, 81: 188-193. DOI: 10.1016/j.sleep.2021.02.039.
[14]
Liu CH, Liu CZ, Zhang J, et al. Reduced spontaneous neuronal activity in the insular cortex and thalamus in healthy adults with insomnia symptoms[J]. Brain Res, 2016, 1648: 317-324. DOI: 10.1016/j.brainres.2016.07.024.
[15]
Liang MJ, Zhou Q, Yang XL, et al. The Study of Resting State fMRI Changes in Primary Insomnia Patients Based on Regional Homogeneity[J]. J Clin Radiol, 2014, 33 (1): 10-14. DOI: 10.13437/j.cnki.jcr.2014.01.003.
[16]
Zeng SQ, Li C, Jiang GH, et al. An investigation on the functional changes in the local brain areas of the primary insomnia patients using resting state functional MRI[J]. Functional and Molecular Medical Imaging (Electronic Version), 2015, 4(4): 762-767. DOI: 10.3969/j.issn.2095-2252.2015.04.002.
[17]
Nie X, Peng DC, Li HJ, et al. Frequency-dependental alterations in amplitude of low-frequency flutuations in primary insomnia: Resting-state fMRI study[J]. Chin Med Imaging Technol, 2016, 32 (2): 204-208. DOI: 10.13929/J.1003-3289.2016.02.011.
[18]
Wei X, Li CM, Zhou ZH, et al. Local consistency of resting functional MRI in patients with primary insomnia with cognitive impairment[J]. Chin J Radiol, 2016, 50(6): 401-405. DOI: 10.3760/cma.j.issn.1005-1201.2016.06.001.
[19]
Ma XF, Wu JF, Zeng SQ, et al. Changes of brain area ratio and low frequency amplitude of functional magnetic resonance imaging in patients with primary insomnia without medication[J]. Chin J Neuromed, 2017, 16(7): 701-705. DOI: 10.3760/cma.j.issn.1671-8925.2017.07.010.
[20]
Wang ZY, Huo JW, Li JQ, et al. Altered brain activity in patients with chronic primary insomnia: a resting-state functional magnetic resonance imaging study[J]. J Med Imaging, 2020, 30(12): 2179-2182, 2187. DOI: 10.1392/J.2179-2182.2020.12.030.
[21]
Zhou YC, Guo ZW, He X, et al. Study on brain function difference of primary insomnia in heart spleendeficiency syndrome and heart kidney Disharmony Syndrome[J]. Zhejiang J Tradit Chin Med, 2021, 56(8): 570-571. DOI: 10.13633/j.cnki.zjtcm.2021.08.013.
[22]
Tan Z, Luo JJ, Luo SC, et al. Study of Primary Insomnia by the Amplitude of Low-Frequency Fluctuation Combined with Functional Connectivity[J]. Chin J CT & MRI, 2022, 20(2): 1-4. DOI: 10.3969/j.issn.1672-5131.2022.02.001.
[23]
Wang YK, Li T, Mang J, et al. Imaging study of healthy people and patients with primary insomnia based on resting state fMRI[J]. Chinese Journal of Experimental Diagnostics, 2018, 22(11): 1976-1980.
[24]
Tahmasian M, Noori K, Samea F, et al. A lack of consistent brain alterations in insomnia disorder: an activation likelihood estimation meta-analysis[J]. Sleep Med Rev, 2018, 42: 111-118. DOI: 10.1016/j.smrv.2018.07.004.
[25]
Jiang B, He D, Guo Z, et al. Effect-size seed-based d mapping of resting-state fMRI for persistent insomnia disorder[J]. Sleep and Breathing, 2020, 24(2): 653-659. DOI: 10.1007/s11325-019-02001-3.
[26]
Zang YF, Zuo XN, Milham M, et al. Toward a meta-analytic synthesis of the resting-state fMRI literature for clinical populations[J]. BioMed Research International, 2015, 2015: 435265. DOI: 10.1155/2015/435265.
[27]
Zhang DS, Gao J, Zhe X, et al. Meta-analysis of activation likelihood estimation in resting state function MRI abnormal activity brain region in type 2 diabetes mellitus patients[J]. Chin J Radiol, 2018, 52(4): 241-246. DOI: 10.3760/cma.j.issn.1005-1201.2018.04.001.
[28]
Toro R, Fox PT, Paus T. Functional coactivation map of the human brain[J]. Cereb Cortex, 2008, 18(11): 2553-2559. DOI: 10.1093/cercor/bhn014.
[29]
Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses[J]. Eur J Epidemiol, 2010, 25(9): 603-605. DOI: 10.1007/s10654-010-9491-z.
[30]
Geiger MJ, O'Gorman Tuura R, Klaver P. Inter‐hemispheric connectivity in the fusiform gyrus supports memory consolidation for faces[J]. Eur J Neurosci, 2016, 43(9): 1137-1145. DOI: 10.1111/ejn.13197.
[31]
Gong L, Shi M, Wang J, et al. The abnormal functional connectivity in the locus coeruleus-norepinephrine system associated with anxiety symptom in chronic insomnia disorder[J]. Frontiers in Neuroscience, 2021, 15: 522. DOI: 10.3389/fnins.2021.678465.
[32]
Palejwala AH, O'Connor KP, Milton CK, et al. Anatomy and white matter connections of the fusiform gyrus[J]. Scientific Reports, 2020, 10(1): 1-12. DOI: 10.1038/s41598-020-70410-6.
[33]
Li C, Hu Q, Zhang D, et al. Neural correlates of affective control regions induced by common therapeutic strategies in major depressive disorders: an Activation Likelihood Estimation meta-analysis study[J]. Neurosci Biobehav R, 2022, 137: 104643. DOI: 10.1016/j.neubiorev.2022.104643.
[34]
Zhang A, Wang X, Li J, et al. Resting-State fMRI in Predicting Response to Treatment With SSRIs in First-Episode, Drug-Naive Patients With Major Depressive Disorder[J]. Front Neurosci, 2022, 16: 831278. DOI: 10.3389/fnins.2022.831278.
[35]
Stenger S, Bludau S, Mohlberg H, et al. Cytoarchitectonic parcellation and functional characterization of four new areas in the caudal parahippocampal cortex[J]. Brain Structure and Function, 2022, 227: 1439-1455. DOI: 10.1007/s00429-021-02441-2.
[36]
De Souza Medeiros L, Santos FH, Almeida AP, et al. Sex differences in the cognitive performance in adults: role of impaired sleep[J]. Sleep Science, 2022, 15(1): 17. DOI: 10.5935/1984-0063.20210022.
[37]
Häusler CO, Eickhoff SB, Hanke M. Processing of visual and non-visual naturalistic spatial information in the "parahippocampal place area"[J]. Scientific Data, 2022, 9(1): 1-15. DOI: 10.1038/s41597-022-01250-4.
[38]
Yan CQ, Wang X, Huo JW, et al. Abnormal global brain functional connectivity in primary insomnia patients: a resting-state functional MRI study[J]. Front Neurol, 2018: 856. DOI: 10.3389/fneur.2018.00856.
[39]
Yu S, Feng F, Zhang Q, et al. Gray matter hypertrophy in primary insomnia: a surface-based morphometric study[J]. Brain Imaging Behav, 2020, 14(5): 1309-1317. DOI: 10.1007/s11682-018-9992-z.
[40]
Gong L, Xu R, Liu D, et al. Abnormal functional connectivity density in patients with major depressive disorder with comorbid insomnia[J]. J Affect Disorders, 2020, 266: 417-423. DOI: 10.1016/j.jad.2020.01.088.
[41]
Wu XL, Li ZL, Zou Z, et al. Resting state functional magnetic resonance imaging of amygdala functional connection in patients with insomnia[J]. Journal of Chinese Practical Diagnosis and Therapy, 2020, 34(2): 183-187. DOI: 10.13507/j.issn.1674-3474.2020.02.023.
[42]
De Zambotti M, Goldstone A, Forouzanfar M, et al. The falling asleep process in adolescents[J]. Sleep, 2020, 43(6): zsz312. DOI: 10.1093/sleep/zsz312.
[43]
Zhao B, Bi Y, Li L, et al. The instant spontaneous neuronal activity modulation of transcutaneous auricular vagus nerve stimulation on patients with primary insomnia[J]. Frontiers in Neuroscience, 2020, 14: 205. DOI: 10.3389/fnins.2020.00205.
[44]
Zhang S, He JK, Meng H, et al. Effects of transcutaneous auricular vagus nerve stimulation on brain functional connectivity of medial prefrontal cortex in patients with primary insomnia[J]. The Anatomical Record, 2021, 304(11): 2426-2435. DOI: 10.1002/ar.24785.
[45]
Babiloni AH, Bellemare A, Beetz G, et al. The effects of non-invasive brain stimulation on sleep disturbances among different neurological and neuropsychiatric conditions: a systematic review[J]. Sleep Med Rev, 2021, 55: 101381. DOI: 10.1016/j.smrv.2020.101381.
[46]
Hertenstein E, Feige B, Gmeiner T, et al. Insomnia as a predictor of mental disorders: a systematic review and meta-analysis[J]. Sleep Med Rev, 2019, 43: 96-105. DOI: 10.1016/j.smrv.2018.10.006.
[47]
Van Someren EJW. Brain mechanisms of insomnia: new perspectives on causes and consequences[J]. Physiol Rev, 2021, 101(3): 995-1046. DOI: 10.1152/physrev.00046.2019.
[48]
Qi S, Zhang Y, Li X, et al. Improved Functional Organization in Patients With Primary Insomnia After Individually-Targeted Transcranial Magnetic Stimulation[J]. Front Neurosci, 2022, 16: 859440. DOI: 10.3389/fnins.2022.859440.

PREV Quantification of the impact of Gadolinium agent on amide-proton-transfer weighted MRI: An ex vivo and in vivo study
NEXT MRI features of intracranial atypical teratoid/rhabdoid tumor and its correlation with the labeling index of Ki-67
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn