Share:
Share this content in WeChat
X
Experience Exchang
Diffusion tensor imaging of the lumbosacral enlargement helps to estimate the neurologic recovery after decompression surgery in patients with cervical spondylotic myelpoathy
XU Songjie  ZHAO Peng  CHEN Xueming  PENG Ruchen  ZHONG Jiali 

Cite this article as: Xu SJ, Zhao P, Chen XM, et al. Diffusion tensor imaging of the lumbosacral enlargement helps to estimate the neurologic recovery after decompression surgery in patients with cervical spondylotic myelpoathy[J]. Chin J Magn Reson Imaging, 2022, 13(6): 98-101, 107. DOI:10.12015/issn.1674-8034.2022.06.019.


[Abstract] Objective To evaluate changes in injury severity and assess postoperative neurologic recovery by conducting diffusion tensor imaging (DTI) of the lumbosacral enlargement and measuring modified Japanese Orthopedic Association (mJOA) score in patients with cervical spondylotic myelopathy (CSM).Materials and Methods Lumbosacral DTI was performed in 9 CSM patients before surgery and at approximately 1 year after surgery. Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values were measured as two primary metrics of DTI. The correlation between both metrics and mJOA score was further examined.Results The postoperative ADC value of the lumbosacral enlargement was significantly decreased (t=-3.024, P=0.004), but FA value was significantly increased (t=3.741, P=0.001) from preoperative levels in CSM patients after surgery. There was significant correlation between FA and mJOA score at both preoperative (r=0.832, P<0.05) and postoperative conditions (r=0.710, P<0.05). There was no significant correlation between ADC and mJOA score at both preoperative (r=0.281, P=0.465) and postoperative conditions (r=0.195, P=0.616).Conclusions The DTI parameter FA value of spinal lumbosacral enlargement in CSM patients is related to neurological function before and after surgery, which can provide a new way for clinical evaluation of functional recovery after cervical spinal cord injury.
[Keywords] cervical spondylotic myelopathy;lumbosacral enlargement;diffusion tension imaging;fractional anisotropy;apparent diffusion coefficient

XU Songjie1   ZHAO Peng1   CHEN Xueming1*   PENG Ruchen2   ZHONG Jiali2  

1 Department of Spine Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China

2 Department of Radiology, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China

Chen XM, E-mail: xuemingchen@sina.com

Conflicts of interest   None.

Received  2022-04-28
Accepted  2022-06-06
DOI: 10.12015/issn.1674-8034.2022.06.019
Cite this article as: Xu SJ, Zhao P, Chen XM, et al. Diffusion tensor imaging of the lumbosacral enlargement helps to estimate the neurologic recovery after decompression surgery in patients with cervical spondylotic myelpoathy[J]. Chin J Magn Reson Imaging, 2022, 13(6): 98-101, 107. DOI:10.12015/issn.1674-8034.2022.06.019.

[1]
Okita G, Ohba T, Takamura T, et al. Application of neurite orientation dispersion and density imaging or diffusion tensor imaging to quantify the severity of cervical spondylotic myelopathy and to assess postoperative neurologic recovery[J]. Spine J, 2018, 18(2): 268-275. DOI: 10.1016/j.spinee.2017.07.007.
[2]
Chen XM, Kong C, Feng SQ, et al. Magnetic resonance diffusion tensor imaging of cervical spinal cord and lumbosacral enlargement in patients with cervical spondylotic myelopathy[J]. J Magn Reson Imaging, 2016, 43: 1484-1491. DOI: 10.1002/jmri.25109.
[3]
Banaszek A, Bladowska J, Podgorski P, et al. Role of diffusion tensor MR imaging in degenerative cervical spine disease: a review of the literature[J]. Clin Neuroradiol, 2016, 26: 265-276. DOI: 10.1007/s00062-015-0467-y.
[4]
Wang K, Chen Z, Zhang F, et al. Evaluation of DTI parameter ratios and diffusion tensor tractography grading in the diagnosis and prognosis prediction of cervical spondylotic myelopathy[J]. Spine, 2017, 42: E202-E210. DOI: 10.1097/BRS.0000000000001784.
[5]
Ellingson BM, Salamon N, Woodworth DC, et al. Reproducibility, temporal stability, and functional correlation of diffusion MR measurements within the spinal cord in patients with asymptomatic cervical stenosis or cervical myelopathy[J]. J Neurosurg Spine, 2018, 28(5): 472-480. DOI: 10.3171/2017.7.SPINE176.
[6]
Jiang W, Han X, Guo H, et al. Usefulness of conventional magnetic resonance imaging, diffusion tensor imaging and neurite orientation dispersion and density imaging in evaluating postoperative function in patients with cervical spondylotic myelopathy[J]. J Orthop Translat, 2018, 15: 59-69. DOI: 10.1016/j.jot.2018.08.006.
[7]
Konomi T, Fujiyoshi K, Hikishima K, et al. Conditions for quantitative evaluation of injured spinal cord by in vivo diffusion tensor imaging and tractography: preclinical longitudinal study in common marmosets[J]. NeuroImage, 2012, 63: 1841-1853. DOI: 10.1016/j.neuroimage.2012.08.040.
[8]
Zhao P, Kong C, Chen XM, et al. In vivo diffusion tensor imaging of chronic spinal cord compression: a rat model with special attention to the conus medullaris[J]. Acta Radiol, 2016, 57(12): 1531-1539. DOI: 10.1177/0284185116631185.
[9]
Ulubaba HE, Saglik S, Yildirim IO, et al. Effectiveness of Diffusion Tensor Imaging in Determining Cervical Spondylotic Myelopathy[J]. Turk Neurosurg, 2021, 31(1): 67-72. DOI: 10.5137/1019-5149.JTN.29149-20.2.
[10]
Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging[J]. Biophys J, 1994, 66(1): 259-267. DOI: 10.1016/S0006-3495(94)80775-1.
[11]
Lee E, Lee JW, Bae YJ, et al. Reliability of pre-operative diffusion tensor imaging parameter measurements of the cervical spine in patients with cervical spondylotic myelopathy[J/OL]. Sci Rep, 2020, 10(1) [2022-04-28]. https://www.nature.com/articles/s41598-020-74624-6. DOI: 10.1038/s41598-020-74624-6.
[12]
Zhang C, Das SK, Yang DJ, et al. Application of magnetic resonance imaging incervical spondylotic myelopathy[J]. World J Radiol, 2014, 6: 826-832. DOI: 10.4329/wjr.v6.i10.826.
[13]
Rajasekaran S, Yerramshetty JS, Chittode VS, et al. The assessment of neuronal status in normal and cervical spondylotic myelopathy using diffusion tensor imaging[J]. Spine, 2014, 39: 1183-1189. DOI: 10.1097/BRS.0000000000000369.
[14]
Tian X, Zhang L, Zhang X, et al. Correlations between preoperative diffusion tensor imaging and surgical outcome in patients with cervical spondylotic myelopathy[J]. Am J Transl Res, 2021, 13(10): 11461-11471.
[15]
Schöller K, Siller S, Brem C, et al. Diffusion Tensor Imaging for Surgical Planning in Patients with Cervical Spondylotic Myelopathy[J]. J Neurol Surg A Cent Eur Neurosurg, 2020, 81(1): 1-9. DOI: 10.1055/s-0039-1691822.
[16]
Li SS, Wang YS, Hu ZX, et al. High-fidelity diffusion tensor imaging of the cervical spinal cord using point-spread-function encoded EPI[J/OL]. Neuroimage, 2021, 236 [2022-04-28]. https://www.sciencedirect.com/science/article/pii/S1053811921003207?via%3Dihub. DOI: 10.1016/j.neuroimage.2021.118043.
[17]
Suetomi Y, Kanchiku T, Nishijima S, et al. Application of diffusion tensor imaging for the diagnosis of segmental level of dysfunction in cervical spondylotic myelopathy[J]. Spinal Cord, 2016, 54(5): 390-395. DOI: 10.1038/sc.2015.192.
[18]
Shabani S, Kaushal M, Budde MD, et al. Diffusion tensor imaging in cervical spondylotic myelopathy: a review[J]. J Neurosurg Spine, 2020: 1-8. DOI: 10.3171/2019.12.SPINE191158.
[19]
Zhang H, Guan L, Hai Y, et al. Multi-shot echo-planar diffusion tensor imaging in cervical spondylotic myelopathy[J]. Bone Joint J, 2020, 102-B(9): 1210-1218. DOI: 10.1302/0301-620X.102B9.BJJ-2020-0468.R1.
[20]
Rajasekaran S, Kanna RM, Chittode VS, et al. Efficacy of Diffusion Tensor Imaging Indices in Assessing Postoperative Neural Recovery in Cervical Spondylotic Myelopathy[J]. Spine, 2017, 42(1): 8-13. DOI: 10.1097/BRS.0000000000001667.
[21]
Gao SJ, Yuan X, Jiang XY, et al. Correlation study of 3T-MR-DTI measurements and clinical symptoms of cervical spondylotic myelopathy[J]. Eur J Radiol, 2013, 82: 1940-1945. DOI: 10.1016/j.ejrad.2013.06.011.
[22]
Maki S, Koda M, Kitamura M, et al. Diffusion tensor imaging can predict surgical outcomes of patients with cervical compression myelopathy[J]. Eur Spine J, 2017, 26: 2459-2466. DOI: 10.1007/s00586-017-5191-7.
[23]
Cui L, Kong C, Chen X, et al. Changes in diffusion tensor imaging indices of the lumbosacral enlargement correlate with cervical spinal cord changes and clinical assessment in patients with cervical spondylotic myelopathy[J/OL]. Clin Neurol Neurosurg, 2019, 186 [2022-04-28]. https://www.sciencedirect.com/science/article/abs/pii/S0303846719300320?via%3Dihub. DOI: 10.1016/j.clineuro.2019.02.014.
[24]
Shabani S, Kaushal M, Budde M, et al. Comparison between quantitative measurements of diffusion tensor imaging and T2 signal intensity in a large series of cervical spondylotic myelopathy patients for assessment of disease severity and prognostication of recovery[J]. J Neurosurg Spine, 2019, 7: 1-7. DOI: 10.3171/2019.3.SPINE181328.
[25]
Kitamura M, Maki S, Koda M, et al. Longitudinal diffusion tensor imaging of patients with degenerative cervical myelopathy following decompression surgery[J]. J Clin Neurosci, 2020, 74: 194-198. DOI: 10.1016/j.jocn.2019.05.018.
[26]
Yang YM, Yoo WK, Bashir S, et al. Spinal cord changes after laminoplasty in cervical compressive myelopathy: a diffusion tensor imaging study[J]. Front Neurol, 2018, 9: 696. DOI: 10.3389/fneur.2018.00696.
[27]
Zhang MZ, Ouyang HQ, Liu JF, et al. Utility of Advanced DWI in the Detection of Spinal Cord Microstructural Alterations and Assessment of Neurologic Function in Cervical Spondylotic Myelopathy Patients[J]. J Magn Reson Imaging, 2022, 55(3): 930-940. DOI: 10.1002/jmri.27894.
[28]
Zhao G, Zhang C, Zhan Y, et al. The Correlation between Functional Connectivity of the Primary Somatosensory Cortex and Cervical Spinal Cord Microstructural Injury in Patients with Cervical Spondylotic Myelopathy[J/OL]. Dis Markers, 2022, 2022. [2022-04-28]. https://www.hindawi.com/journals/dm/2022/2623179/. DOI: 10.1155/2022/2623179.
[29]
Nischal N, Tripathi S, Singh JP. Quantitative Evaluation of the Diffusion Tensor Imaging Matrix Parameters and the Subsequent Correlation with the Clinical Assessment of Disease Severity in Cervical Spondylotic Myelopathy[J]. Asian Spine J, 2021, 15(6): 808-816. DOI: 10.31616/asj.2020.0223.
[30]
Skotarczak M, Dzierżanowski J, Kaszubowski M, et al. Diagnostic value of diffusion tensor imaging in patients with clinical signs of cervical spondylotic myelopathy[J/OL]. Neurol Neurochir Pol, 2022. [2022-04-28]. https://journals.viamedica.pl/neurologia_neurochirurgia_polska/article/view/86515. DOI: 10.5603/PJNNS.a2022.0031.
[31]
Han CF, Hai Y, Liu YZ, et al. A long-term follow up study of cervical spondylotic myelopathy using diffusion tensor imaging[J]. Natl Med J China, 2021, 101(43): 3594-3599. DOI: 10.3760/cma.j.cn112137-20210429-01030.

PREV MRI features of intracranial atypical teratoid/rhabdoid tumor and its correlation with the labeling index of Ki-67
NEXT Application of MRI ultrashort echo time and gradient echo sequence in the lungs of preterm infants
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn