Share:
Share this content in WeChat
X
Review
Research progress of magnetic resonance imaging in predicting the prognosis of acute ischemic stroke
OUYANG Feng  WANG Bo  CHEN Ye  YIN Mingxue  ZENG Xianjun 

Cite this article as: Ouyang F, Wang B, Chen Y, et al. Research progress of magnetic resonance imaging in predicting the prognosis of acute ischemic stroke[J]. Chin J Magn Reson Imaging, 2022, 13(7): 147-151. DOI:10.12015/issn.1674-8034.2022.07.029.


[Abstract] Stroke is characterized by high incidence rate, high recurrence rate, high disability rate and high mortality rate, it has become the main cause of death and disability in China. How to improve the prognosis of patients is a global problem. In recent years, with the continuous progress of imaging means and stroke research work, we have been able to do some prediction for the prognosis of the patients with stroke, accurately predict the prognosis of stroke patients has important clinical significance, can not only help the clinical estimation development, and help to optimize the early individualized rehabilitation. This paper reviews the value of MRI in prognosis prediction to ischemic stroke patients, aiming to provide objective reference for clinical decision making. In general, the diagnosis and treatment of stroke still faces severe challenges, and research in related fields needs to be carried out.
[Keywords] stroke;magnetic resonance imaging;prognosis;estimate

OUYANG Feng   WANG Bo   CHEN Ye   YIN Mingxue   ZENG Xianjun*  

Department of Imaging, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China

Zeng XJ, E-mail: xianjun-zeng@126.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Natural Science Foundation of Jiangxi Province (No. S2019ZRZDB0311).
Received  2022-02-28
Accepted  2022-07-05
DOI: 10.12015/issn.1674-8034.2022.07.029
Cite this article as: Ouyang F, Wang B, Chen Y, et al. Research progress of magnetic resonance imaging in predicting the prognosis of acute ischemic stroke[J]. Chin J Magn Reson Imaging, 2022, 13(7): 147-151. DOI:10.12015/issn.1674-8034.2022.07.029.

[1]
Ma Q, Li R, Wang L, et al. Temporal trend and attributable risk factors of stroke burden in China, 1990-2019: an analysis for the Global Burden of Disease Study 2019[J/OL]. Lancet Public Health, 2021, 6(12) [2022-07-04]. https://pubmed.ncbi.nlm.nih.gov/34838196/. DOI: 10.1016/S2468-2667(21)00228-0.
[2]
Moran A, Gu D, Zhao D, et al. Future cardiovascular disease in china: markov model and risk factor scenario projections from the coronary heart disease policy model-china[J]. Circ Cardiovasc Qual Outcomes, 2010, 3(3): 243-252. DOI: 10.1161/CIRCOUTCOMES.109.910711.
[3]
Asakawa T, Zong L, Wang L, et al. Unmet challenges for rehabilitation after stroke in China[J]. Lancet, 2017, 390(10090): 121-122. DOI: 10.1016/S0140-6736(17)31584-2.
[4]
Sacco RL, Kasner SE, Broderick JP, et al. An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American Heart Association/American Stroke Association[J]. Stroke, 2013, 44(7): 2064-2089. DOI: 10.1161/STR.0b013e318296aeca.
[5]
Zerna C, Thomalla G, Campbell BCV, et al. Current practice and future directions in the diagnosis and acute treatment of ischaemic stroke[J]. Lancet, 2018, 392(10154): 1247-1256. DOI: 10.1016/S0140-6736(18)31874-9.
[6]
Christoforidis GA, Vakil P, Ansari SA, et al. Impact of Pial Collaterals on Infarct Growth Rate in Experimental Acute Ischemic Stroke[J]. AJNR Am J Neuroradiol, 2017, 38(2): 270-275. DOI: 10.3174/ajnr.A5003.
[7]
Derraz I, Ahmed R, Benali A, et al. FLAIR vascular hyperintensities and functional outcome in nonagenarians with anterior circulation large-vessel ischemic stroke treated with endovascular thrombectomy[J]. Eur Radiol, 2021, 31(10): 7406-7416. DOI: 10.1007/s00330-021-07866-1.
[8]
Dong X, Nao J. Fluid-attenuated inversion recovery vascular hyperintensities in anterior circulation acute ischemic stroke: associations with cortical brain infarct volume and 90-day prognosis[J]. Neurol Sci, 2019, 40(8): 1675-1682. DOI: 10.1007/s10072-019-03909-0.
[9]
Jiang L, Peng M, Geng W, et al. FLAIR hyperintensities-DWI mismatch in acute stroke: associations with DWI volume and functional outcome[J]. Brain Imaging Behav, 2020, 14(4): 1230-1237. DOI: 10.1007/s11682-019-00156-x.
[10]
Zhu L, Jiang F, Wang M, et al. Fluid-Attenuated Inversion Recovery Vascular Hyperintensity as a Potential Predictor for the Prognosis of Acute Stroke Patients After Intravenous Thrombolysis[J/OL]. Front Neurosci, 2022, 15 [2022-07-04]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8823327/pdf/fnins-15-808436.pdf. DOI: 10.3389/fnins.2021.808436.
[11]
Morofuji Y, Horie N, Tateishi Y, et al. Arterial Spin Labeling Magnetic Resonance Imaging Can Identify the Occlusion Site and Collateral Perfusion in Patients with Acute Ischemic Stroke: Comparison with Digital Subtraction Angiography[J]. Cerebrovasc Dis, 2019, 48(1-2): 70-76. DOI: 10.1159/000503090.
[12]
de Havenon A, Haynor DR, Tirschwell DL, et al. Association of Collateral Blood Vessels Detected by Arterial Spin Labeling Magnetic Resonance Imaging With Neurological Outcome After Ischemic Stroke[J]. JAMA Neurol, 2017, 74(4): 453-458. DOI: 10.1001/jamaneurol.2016.4491.
[13]
Nam KW, Kim CK, Yoon BW, et al. Multiphase arterial spin labeling imaging to predict early recurrent ischemic lesion in acute ischemic stroke[J]. Sci Rep, 2022, 12(1): 1456. DOI: 10.1038/s41598-022-05465-8.
[14]
Zhang M, Zhu W, Ma Y, et al. Early Neurological Deterioration and Hypoperfusion Volume Ratio on Arterial Spin Labeling in Patients with Acute Ischemic Stroke[J/OL]. J Stroke Cerebrovasc Dis, 2021, 30(8) [2022-07-04]. https://sci-hub.se/10.1016/j.jstrokecerebrovasdis.2021.105885. DOI: 10.1016/j.jstrokecerebrovasdis.2021.105885.
[15]
Lu SS, Cao YZ, Su CQ, et al. Hyperperfusion on Arterial Spin Labeling MRI Predicts the 90-Day Functional Outcome After Mechanical Thrombectomy in Ischemic Stroke[J]. J Magn Reson Imaging, 2021, 53(6): 1815-1822. DOI: 10.1002/jmri.27455.
[16]
Seiler A, Lauer A, Deichmann R, et al. Signal variance-based collateral index in DSC perfusion: A novel method to assess leptomeningeal collateralization in acute ischaemic stroke[J]. J Cereb Blood Flow Metab, 2020, 40(3): 574-587. DOI: 10.1177/0271678X19831024.
[17]
Shin J, Kim YS, Jang HS, et al. Perfusion recovery on TTP maps after endovascular stroke treatment might predict favorable neurological outcomes[J]. Eur Radiol, 2020, 30(12): 6421-6431. DOI: 10.1007/s00330-020-07066-3.
[18]
Chao SP, Chen CY, Tsai FY, et al. Predicting Mortality in Patients With "Malignant" Middle Cerebral Artery Infarction Using Susceptibility-Weighted Magnetic Resonance Imaging: Preliminary Findings[J/OL]. Medicine (Baltimore), 2016, 95(8) [2022-07-04]. https://sci-hub.se/10.1097/MD.0000000000002781. DOI: 10.1097/MD.0000000000002781.
[19]
Lee HJ, Roh HG, Lee SB, et al. Collateral estimation by susceptibility-weighted imaging and prediction of functional outcomes after acute anterior circulation ischemic stroke[J/OL]. Sci Rep, 2021, 11(1) [2022-07-04]. https://www.nature.com/articles/s41598-021-00775-9.pdf. DOI: 10.1038/s41598-021-00775-9.
[20]
Schlemm L, Braemswig TB, Boutitie F, et al. Cerebral Microbleeds and Treatment Effect of Intravenous Thrombolysis in Acute Stroke: An Analysis of the WAKE-UP Randomized Clinical Trial[J/OL]. Neurology, 2022, 98(3) [2022-07-04]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8792812/. DOI: 10.1212/WNL.0000000000013055.
[21]
Zhang S, Zhu WZ, Wang Y. Magnetic resonance brain oxygen metabolism imaging principle in ischemic stroke application[J]. Radiol Pract, 2019, 34(10): 1063-1065. DOI: 10.13609/j.cnki.1000-0313.2019.10.002.
[22]
Dimov AV, Christoforidis GA, Saadat N, et al. QSM in canine model of acute cerebral ischemia: A pilot study[J]. Magn Reson Med, 2021, 85(3): 1602-1610. DOI: 10.1002/mrm.28498.
[23]
Zhang S, Cho J, Nguyen TD, et al. Initial Experience of Challenge-Free MRI-Based Oxygen Extraction Fraction Mapping of Ischemic Stroke at Various Stages: Comparison With Perfusion and Diffusion Mapping[J/OL]. Front Neurosci, 2020, 14 [2022-07-04]. https://sci-hub.se/10.3389/fnins.2020.535441. DOI: 10.3389/fnins.2020.535441.
[24]
Fan AP, An H, Moradi F, et al. Quantification of brain oxygen extraction and metabolism with [15O]-gas PET: A technical review in the era of PET/MRI[J/OL]. Neuroimage, 2020, 220 [2022-07-04]. https://sci-hub.se/10.1016/j.neuroimage.2020.117136. DOI: 10.1016/j.neuroimage.2020.117136.
[25]
Uchida Y, Kan H, Inoue H, et al. Penumbra Detection With Oxygen Extraction Fraction Using Magnetic Susceptibility in Patients With Acute Ischemic Stroke[J/OL]. Front Neurol, 2022, 13 [2022-07-04]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8873150/pdf/fneur-13-752450.pdf. DOI: 10.3389/fneur.2022.752450.
[26]
Chen GH, Qiu JB, Zheng SQ, et al. The application value of magnetic resonance angiography lateral branch vessels in the prognosis after stroke mechanical embolization[J]. Chin J Magn Reson Imaging, 2020, 11(4): 270-274. DOI: 10.12015/issn.1674-8034.2020.04.006.
[27]
Yang R, Zhang Y, Xu M, et al. Image Features of Magnetic Resonance Angiography under Deep Learning in Exploring the Effect of Comprehensive Rehabilitation Nursing on the Neurological Function Recovery of Patients with Acute Stroke[J/OL]. Contrast Media Mol Imaging, 2021 [2022-07-04]. https://downloads.hindawi.com/journals/cmmi/2021/1197728.pdf. DOI: 10.1155/2021/1197728.
[28]
Claassen JAHR, Thijssen DHJ, Panerai RB, et al. Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation[J]. Physiol Rev, 2021, 101(4): 1487-1559. DOI: 10.1152/physrev.00022.2020.
[29]
Xu YZ, Xue HL, Liu JY. Imaging evaluation of cerebrovascular responsiveness and its application in intracranial and extracranial arterial stenosis[J]. Chin J Stroke, 2019, 14(8): 797-802. DOI: 10.3969/j.issn.1673-5765.2019.08.012.
[30]
Zhong TT, Gao SQ. Correlation between cerebrovascular reactivity and neurological deficit and prognosis in patients with cerebral infarction[J]. Journal of Apoplexy and Nervous Diseases, 2019, 36(2): 109-111. DOI: 10.19845/j.cnki.zfysjjbzz.2019.02.003.
[31]
Sebök M, van Niftrik CHB, Wegener S, et al. Agreement of novel hemodynamic imaging parameters for the acute and chronic stages of ischemic stroke: a matched-pair cohort study[J/OL]. Neurosurg Focus, 2021, 51(1) [2022-07-04]. https://pubmed.ncbi.nlm.nih.gov/34198249/. DOI: 10.3171/2021.4.FOCUS21125.
[32]
Pandit R, Chen L, Götz J. The blood-brain barrier: Physiology and strategies for drug delivery[J]. Adv Drug Deliv Rev, 2020, 165-166: 1-14. DOI: 10.1016/j.addr.2019.11.009.
[33]
Nadareishvili Z, Simpkins AN, Hitomi E, et al. Post-Stroke Blood-Brain Barrier Disruption and Poor Functional Outcome in Patients Receiving Thrombolytic Therapy[J]. Cerebrovasc Dis, 2019, 47(3-4): 135-142. DOI: 10.1159/000499666.
[34]
Leigh R, Hitomi E, Hutchison RM, et al. Post-stroke blood-brain barrier disruption predicts poor outcome in patients enrolled in the ACTION study[J]. J Neuroimaging, 2021, 31(4): 751-757. DOI: 10.1111/jon.12862.
[35]
Müller S, Kufner A, Dell'Orco A, et al. Evolution of Blood-Brain Barrier Permeability in Subacute Ischemic Stroke and Associations With Serum Biomarkers and Functional Outcome[J/OL]. Front Neurol, 2021, 12 [2022-07-04]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8567961/pdf/fneur-12-730923.pdf. DOI: 10.3389/fneur.2021.730923.
[36]
Huang WY, Wu G, Guo SX, et al. Multi-parameters of Magnetic Resonance Imaging to Estimate Ischemia-Reperfusion Injury after Stroke in Hyperglycemic Rats[J/OL]. Sci Rep, 2019, 9(1) [2022-07-04]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6393533/. DOI: 10.1038/s41598-019-39263-6.
[37]
Sun C, Liu X, Bao C, et al. Advanced non-invasive MRI of neuroplasticity in ischemic stroke: Techniques and applications[J/OL]. Life Sci, 2020, 261 [2022-07-04]. https://linkinghub.elsevier.com/retrieve/pii/S0024-3205(20)31118-8. DOI: 10.1016/j.lfs.2020.118365.
[38]
Guo Q, Wu H, Peng MY, et al. DWI-based radioomics and machine learning predict prognosis after mechanical embolization in acute stroke[J]. Chin J Magn Reson Imaging,, 2021, 12(10): 32-35, 48. DOI: 10.12015/issn.1674-8034.2021.10.008.
[39]
Kishi F, Nakagawa I, Park H, et al. Low relative diffusion weighted image signal intensity can predict good prognosis after endovascular thrombectomy in patients with acute ischemic stroke[J]. J Neurointerv Surg, 2022, 14(6): 618-622. DOI: 10.1136/neurintsurg-2021-017583.
[40]
Huang X, Xu X, Sun Y, et al. Ultra-high b value DWI in distinguishing fresh gray matter ischemic lesions from white matter ones: a comparative study with routine and high b value DWI[J]. Quant Imaging Med Surg, 2021, 11(11): 4583-4593. DOI: 10.21037/qims-20-1241.
[41]
Moulton E, Valabregue R, Lehéricy S, et al. Multivariate prediction of functional outcome using lesion topography characterized by acute diffusion tensor imaging[J/OL]. Neuroimage Clin, 2019, 23 [2022-07-04]. https://sci-hub.se/10.1016/j.nicl.2019.101821. DOI: 10.1016/j.nicl.2019.101821.
[42]
Wilmskoetter J, He X, Caciagli L, et al. Language Recovery after Brain Injury: A Structural Network Control Theory Study[J]. J Neurosci, 2022, 42(4): 657-669. DOI: 10.1523/JNEUROSCI.1096-21.2021.
[43]
Moulton E, Magno S, Valabregue R, et al. Acute Diffusivity Biomarkers for Prediction of Motor and Language Outcome in Mild-to-Severe Stroke Patients[J]. Stroke, 2019, 50(8): 2050-2056. DOI: 10.1161/STROKEAHA.119.024946.
[44]
Lee J, Chang WH, Kim YH. Relationship between the Corticospinal and Corticocerebellar Tracts and Their Role in Upper Extremity Motor Recovery in Stroke Patients[J]. J Pers Med, 2021, 11(11): 1162. DOI: 10.3390/jpm11111162.
[45]
Yu K, Zhang C, Xu K. FMRI research progress of post-stroke aphasis following treatment[J]. Chin J Magn Reson Imaging, 2020, 11(10): 937-939. DOI: 10.12015/issn.1674-8034.2020.10.026.
[46]
Plantin J, Verneau M, Godbolt AK, et al. Recovery and Prediction of Bimanual Hand Use After Stroke[J/OL]. Neurology, 2021, 97(7) [2022-07-04]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8377875/. DOI: 10.1212/WNL.0000000000012366.
[47]
Chen Q, Zhou J, Zhang H, et al. One-step analysis of brain perfusion and function for acute stroke patients after reperfusion: A resting-state fMRI study[J]. J Magn Reson Imaging, 2019, 50(1): 221-229. DOI: 10.1002/jmri.26571.
[48]
Min YS, Park JW, Park E, et al. Interhemispheric Functional Connectivity in the Primary Motor Cortex Assessed by Resting-State Functional Magnetic Resonance Imaging Aids Long-Term Recovery Prediction among Subacute Stroke Patients with Severe Hand Weakness[J/OL]. J Clin Med, 2020, 9(4) [2022-07-04]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7230262/. DOI: 10.3390/jcm9040975.
[49]
D'Imperio D, Romeo Z, Maistrello L, et al. Sensorimotor, Attentional, and Neuroanatomical Predictors of Upper Limb Motor Deficits and Rehabilitation Outcome after Stroke[J/OL]. Neural Plast, 2021 [2022-07-04]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8035034/. DOI: 10.1155/2021/8845685.
[50]
Shang WW, Jiang L, Xue HL, et al. Comparative study of magnetic resonance spectroscopy scanning in the prognosis of acute cerebral infarction using different sequence parameters[J]. Chin J Magn Reson Imaging, 2020, 11(2): 104-108. DOI: 10.12015/issn.1674-8034.2020.02.006.
[51]
Mazibuko N, Tuura RO, Sztriha L, et al. Subacute Changes in N-Acetylaspartate (NAA) Following Ischemic Stroke: A Serial MR Spectroscopy Pilot Study[J/OL]. Diagnostics (Basel), 2020, 10(7) [2022-07-04]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7399797/. DOI: 10.3390/diagnostics10070482.
[52]
Msayib Y, Harston GWJ, Tee YK, et al. Quantitative CEST imaging of amide proton transfer in acute ischaemic stroke[J/OL]. Neuroimage Clin, 2019, 23 [2022-07-04]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6503165/. DOI: 10.1016/j.nicl.2019.101833.
[53]
Lin G, Zhuang C, Shen Z, et al. APT Weighted MRI as an Effective Imaging Protocol to Predict Clinical Outcome After Acute Ischemic Stroke[J/OL]. Front Neurol, 2018, 9 [2022-07-04]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6205981/. DOI: 10.3389/fneur.2018.00901.
[54]
Albers GW, Marks MP, Kemp S, et al. Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion Imaging[J]. N Engl J Med, 2018, 378(8): 708-718. DOI: 10.1056/NEJMoa1713973.
[55]
Thomalla G, Simonsen CZ, Boutitie F, et al. MRI-Guided Thrombolysis for Stroke with Unknown Time of Onset[J]. N Engl J Med, 2018, 379(7): 611-622. DOI: 10.1056/NEJMoa1804355.
[56]
Lee J, Kim H, Kim J, et al. Multimodal Imaging Biomarker-Based Model Using Stratification Strategies for Predicting Upper Extremity Motor Recovery in Severe Stroke Patients[J]. Neurorehabil Neural Repair, 2022, (3): 217-226. DOI: 10.1177/15459683211070278.
[57]
Brugnara G, Neuberger U, Mahmutoglu MA, et al. Multimodal Predictive Modeling of Endovascular Treatment Outcome for Acute Ischemic Stroke Using Machine-Learning[J]. Stroke, 2020, 51(12): 3541-3551. DOI: 10.1161/STROKEAHA.120.030287.
[58]
Jiang L, Zhou L, Yong W, et al. A deep learning-based model for prediction of hemorrhagic transformation after stroke[J/OL]. Brain Pathol, 2021 [2022-07-04]. https://onlinelibrary.wiley.com/doi/10.1111/bpa.13023. DOI: 10.1111/bpa.13023.

PREV Advances of brain network and endophenotypes in fMRI in juvenile myoclonic epilepsy
NEXT Progress of three-dimensional high resolution MRI technology in the diagnosis of trigeminal neuralgia
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn