Share:
Share this content in WeChat
X
Experience Exchang
Interhemispheric voxel-mirrored homotopic connectivity in patients with type 2 diabetes
GAN Fan  ZHOU Shuilian  LIU Hui  ZHONG Yulin 

Cite this article as: Gan F, Zhou SL, Liu H, et al. Interhemispheric voxel-mirrored homotopic connectivity in patients with type 2 diabetes[J]. Chin J Magn Reson Imaging, 2022, 13(8): 71-74. DOI:10.12015/issn.1674-8034.2022.08.013.


[Abstract] Objective This study aimed to investigate the hemispheric homunculus functional connectivity in type 2 diabetes mellitus (T2DM) patients using the voxel mirror homunculus connection (VMHC) method.Materials and Methods This was a cross-sectional study, according to the inclusion criteria, 22 patients with T2DM from the Jiangxi Provincial People's Hospital from August 2020 to December 2021 were selected to the T2DM group and 22 healthy controls recruited from the community (sex, age and education level matched with patients in the T2DM group) were selected to the normal control group. Both groups underwent 3.0 T MRI scans, and then applied DPABI_V4.0 software and SPM8 to preprocess the MRI data, the differences in whole brain mirror homologous connections between the two groups of subjects were analyzed by the VMHC method, the differences in VMHC values between the two groups were analyzed by a paired two-sample t-test and the correlation between mean standardized VMHC values and fasting glucose values in significantly different brain regions was analyzed.Results Compared to healthy controls, VMHC values were higher in the diabetic group (GRF corrected, P<0.001 for voxel level, P<0.05 for cluster level) in both cerebellar lobule Ⅸ regions, and the mean standardized VMHC values in the differential brain regions did not correlate significantly with fasting glucose values (P>0.05).Conclusions The abnormalities in the functional connectivity of the bilateral cerebellar hemispheres with homunculus in T2DM patients may provide a reference for the pathogenesis of brain injury in T2DM patients.
[Keywords] voxel-mirrored homotopic connectivity;type 2 diabetes mellitus;magnetic resonance imaging;cerebellar hemisphere;brain injury

GAN Fan1, 2   ZHOU Shuilian2   LIU Hui2   ZHONG Yulin2*  

1 Medical College of Nanchang University, Nanchang 330000, China

2 Department of Ophthalmology, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang 330000, China

Zhong YL, E-mail: 804722489@qq.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Science and Technology Plan of Jiangxi Provincial Health Commission (No. 202210012).
Received  2022-04-26
Accepted  2022-07-30
DOI: 10.12015/issn.1674-8034.2022.08.013
Cite this article as: Gan F, Zhou SL, Liu H, et al. Interhemispheric voxel-mirrored homotopic connectivity in patients with type 2 diabetes[J]. Chin J Magn Reson Imaging, 2022, 13(8): 71-74. DOI:10.12015/issn.1674-8034.2022.08.013.

[1]
Cho NH, Shaw JE, Karuranga S, et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045[J]. Diabetes Res Clin Pract, 2018, 138: 271-281. DOI: 10.1016/j.diabres.2018.02.023.
[2]
Infante-Garcia C, Garcia-Alloza M. Review of the effect of natural compounds and extracts on neurodegeneration in animal models of diabetes mellitus[J/OL]. Int J Mol Sci, 2019, 20(10) [2022-04-17]. https://www.mdpi.com/1422-0067/20/10/2533. DOI: 10.3390/ijms20102533.
[3]
Zhang JY, Wang YX, Wang J, et al. White matter integrity disruptions associated with cognitive impairments in type 2 diabetic patients[J]. Diabetes, 2014, 63(11): 3596-3605. DOI: 10.2337/db14-0342.
[4]
Tzourio-Mazoyer N. Intra- and inter-hemispheric connectivity supporting hemispheric specialization[J/OL]. 2016 [2022-04-17]. https://www.ncbi.nlm.nih.gov/books/NBK435764. DOI: 10.1007/978-3-319-27777-6_9.
[5]
Conklin CJ, Faro SH, Mohamed FB. Technical considerations for functional magnetic resonance imaging analysis[J]. Neuroimaging Clin N Am, 2014, 24(4): 695-704. DOI: 10.1016/j.nic.2014.07.005.
[6]
Raichle ME, Snyder AZ. A default mode of brain function: a brief history of an evolving idea[J]. Neuroimage, 2007, 37(4): 1083-1090. DOI: 10.1016/j.neuroimage.2007.02.041.
[7]
Zuo XN, Kelly C, di Martino A, et al. Growing together and growing apart: regional and sex differences in the lifespan developmental trajectories of functional homotopy[J]. J Neurosci, 2010, 30(45): 15034-15043. DOI: 10.1523/JNEUROSCI.2612-10.2010.
[8]
Shao Y, Bao J, Huang X, et al. Comparative study of interhemispheric functional connectivity in left eye monocular blindness versus right eye monocular blindness: a resting-state functional MRI study[J]. Oncotarget, 2018, 9(18): 14285-14295. DOI: 10.18632/oncotarget.24487.
[9]
Huang X, Zhou FQ, Dan HD, et al. Impaired interhemispheric synchrony in late blindness[J]. Acta Radiol, 2020, 61(3): 414-423. DOI: 10.1177/0284185119864843.
[10]
Chen J, Sun DL, Shi YH, et al. Altered static and dynamic voxel-mirrored homotopic connectivity in subacute stroke patients: a resting-state fMRI study[J]. Brain Imaging Behav, 2021, 15(1): 389-400. DOI: 10.1007/s11682-020-00266-x.
[11]
Fan HH, Yang X, Zhang J, et al. Analysis of voxel-mirrored homotopic connectivity in medication-free, current major depressive disorder[J]. J Affect Disord, 2018, 240: 171-176. DOI: 10.1016/j.jad.2018.07.037.
[12]
Xia WQ, Wang SH, Spaeth AM, et al. Insulin resistance-associated interhemispheric functional connectivity alterations in T2DM: a resting-state fMRI study[J/OL]. Biomed Res Int, 2015 [2022-03-01]. https://www.hindawi.com/journals/bmri/2015/719076. DOI: 10.115/.
[13]
Wang Y, Wang X, Chen W, et al. Brain function alterations in patients with diabetic nephropathy complicated by retinopathy under resting state conditions assessed by voxel-mirrored homotopic connectivity[J]. Endocr Pract, 2020, 26(3): 291-298. DOI: 10.4158/ep-2019-0355.
[14]
ZHU DL. Society CD. Guideline for the prevention and treatment of type 2 diabetes mellitus in China (2020 edition) (Part 1)[J]. Chin J Pract Intern Med, 2021, 41(8): 668-695. DOI: 10.19538/j.nk2021080106.
[15]
Schmahmann JD, Pandya DN. Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey[J]. J Neurosci, 1997, 17(1): 438-458. DOI: 10.1523/jneurosci.17-01-00438.1997.
[16]
Allen G, Buxton RB, Wong EC, et al. Attentional activation of the cerebellum independent of motor involvement[J]. Science, 1997, 275(5308): 1940-1943. DOI: 10.1126/science.275.5308.1940.
[17]
de Smet HJ, Paquier P, Verhoeven J, et al. The cerebellum: its role in language and related cognitive and affective functions[J]. Brain Lang, 2013, 127(3): 334-342. DOI: 10.1016/j.bandl.2012.11.001.
[18]
Habas C, Kamdar N, Nguyen D, et al. Distinct cerebellar contributions to intrinsic connectivity networks[J]. J Neurosci, 2009, 29(26): 8586-8594. DOI: 10.1523/jneurosci.1868-09.2009.
[19]
Sang L, Qin W, Liu Y, et al. Resting-state functional connectivity of the vermal and hemispheric subregions of the cerebellum with both the cerebral cortical networks and subcortical structures[J]. Neuroimage, 2012, 61(4): 1213-1225. DOI: 10.1016/j.neuroimage.2012.04.011.
[20]
Buckner RL, Krienen FM, Castellanos A, et al. The organization of the human cerebellum estimated by intrinsic functional connectivity[J]. J Neurophysiol, 2011, 106(5): 2322-2345. DOI: 10.1152/jn.00339.2011.
[21]
Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity[J]. Cereb Cortex, 2009, 19(10): 2485-2497. DOI: 10.1093/cercor/bhp135.
[22]
Filippini N, MacIntosh BJ, Hough MG, et al. Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele[J]. Proc Natl Acad Sci USA, 2009, 106(17): 7209-7214. DOI: 10.1073/pnas.0811879106.
[23]
Uddin LQ, Kelly AM, Biswal BB, et al. Functional connectivity of default mode network components: correlation, anticorrelation, and causality[J]. Hum Brain Mapp, 2009, 30(2): 625-637. DOI: 10.1002/hbm.20531.
[24]
Liu YO, Liang PP, Duan YY, et al. Abnormal baseline brain activity in patients with neuromyelitis optica: a resting-state fMRI study[J]. Eur J Radiol, 2011, 80(2): 407-411. DOI: 10.1016/j.ejrad.2010.05.002.
[25]
Liu HH, Liu J, Peng LM, et al. Changes in default mode network connectivity in different glucose metabolism status and diabetes duration[J/OL]. Neuroimage Clin, 2019, 21 [2022-04-17]. https://www.sciencedirect.com/science/article/pii/S2213158218303772?via%3Dihub. DOI: 10.1016/j.nicl.2018.101629.
[26]
Bertram S, Brixius K, Brinkmann C. Exercise for the diabetic brain: how physical training may help prevent dementia and Alzheimer's disease in T2DM patients[J]. Endocrine, 2016, 53(2): 350-363. DOI: 10.1007/s12020-016-0976-8.
[27]
Schmahmann JD. The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy[J]. Neuropsychol Rev, 2010, 20(3): 236-260. DOI: 10.1007/s11065-010-9142-x.
[28]
Schmahmann JD. The cerebellum and cognition[J]. Neurosci Lett, 2019, 688: 62-75. DOI: 10.1016/j.neulet.2018.07.005.
[29]
Zhang YW, Wang J, Wei P, et al. Interhemispheric resting-state functional connectivity abnormalities in type 2 diabetes patients[J]. Ann Palliat Med, 2021, 10(7): 8123-8133. DOI: 10.21037/apm-21-1655.

PREV Comparative study on three kinds of 3.0 T MRI sequences for lumbar facet joint cartilage
NEXT Value of magnetic resonance imaging in evaluating anatomical structure of hippocampus in patients with senile dementia
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn