Share:
Share this content in WeChat
X
Review
Research progress of multimodal magnetic resonance imaging in glioma genotyping
GAO Weilin  WU Qiong 

Cite this article as: Gao WL, Wu Q. Research progress of multimodal magnetic resonance imaging in glioma genotyping[J]. Chin J Magn Reson Imaging, 2022, 13(8): 130-134. DOI:10.12015/issn.1674-8034.2022.08.029.


[Abstract] Glioma is the most common primary tumor of the central nervous system and is highly heterogeneous. Genotyping is important for the clinical treatment plan and prognosis of glioma. At present, the more mature and extensive genotypes are: isocitrate dehydrogenase (IDH), 1p/19q non-coding deletion, O6-methylguanine-DNA-methyltransferase (MGMT), telomerase reverse transcriptase (TERT), epidermal growth factor receptor (EGFR) and the like. Multimodal MRI such as diffusion tensor imaging (DTI), neurite orientation dispersion and density imaging (NODDI), mean apparent propagator (MAP)-MRI , amide proton transfer (ATP) imaging and 2-hydroxyglutarate magnetic resonance spectroscopy (2HG-MRS) can predict glioma genotyping from various aspects, thus guiding the next step treat. The T2-fluid attenuated inversion recovery (FLAIR) mismatch sign is a highly specific, low-sensitivity imaging marker for IDH-mutant astrocytoma with considerable potential for clinical application. This article reviews the research progress of these MRI techniques and T2-FLAIR mismatch sign in glioma genotyping.
[Keywords] glioma;genotyping;multimodality magnetic resonance imaging;T2-FLAIR mismatch sign

GAO Weilin   WU Qiong*  

Department of Radiology, the First Clinical Medical College of Inner Mongolia Medical University, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China

Wu Q, E-mail: 33360023@qq.com

Conflicts of interest   None.

Received  2022-04-20
Accepted  2022-07-26
DOI: 10.12015/issn.1674-8034.2022.08.029
Cite this article as: Gao WL, Wu Q. Research progress of multimodal magnetic resonance imaging in glioma genotyping[J]. Chin J Magn Reson Imaging, 2022, 13(8): 130-134. DOI:10.12015/issn.1674-8034.2022.08.029.

[1]
Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary[J]. Acta Neuropathol, 2016, 131(6): 803-820. DOI: 10.1007/s00401-016-1545-1.
[2]
Louis DN, Perry A, Wesseling P, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary[J]. Neuro Oncol, 2021, 23(8): 1231-1251. DOI: 10.1093/neuonc/noab106.
[3]
Brahimaj BC, Kochanski RB, Pearce JJ, et al. Structural and Functional Imaging in Glioma Management[J]. Neurosurgery, 2021, 88(2): 211-221. DOI: 10.1093/neuros/nyaa360.
[4]
Huang Z, Lu C, Li G, et al. Prediction of Lower Grade Insular Glioma Molecular Pathology Using Diffusion Tensor Imaging Metric-Based Histogram Parameters[J/OL]. Front Oncol, 2021, 11 [2022-04-20]. https://www.frontiersin.org/articles/10.3389/fonc.2021.627202/full. DOI: 10.3389/fonc.2021.627202.
[5]
Figini M, Riva M, Graham M, et al. Prediction of Isocitrate Dehydrogenase Genotype in Brain Gliomas with MRI: Single-Shell versus Multishell Diffusion Models[J]. Radiology, 2018, 289(3): 788-796. DOI: 10.1148/radiol.2018180054.
[6]
Augelli R, Ciceri E, Ghimenton C, et al. Magnetic resonance diffusion-tensor imaging metrics in High Grade Gliomas: Correlation with IDH1 gene status in WHO 2016 era[J]. Eur J Radiol. 2019, 116: 174-179. DOI: 10.1016/j.ejrad.2019.04.020.
[7]
Tan WL, Huang WY, Yin B, et al. Can Diffusion Tensor Imaging Noninvasively Detect IDH1 Gene Mutations in Astrogliomas? A Retrospective Study of 112 Cases[J]. AJNR Am J Neuroradiol. 2014, 35(5): 920-927. DOI: 10.3174/ajnr.A3803.
[8]
Moon WJ, Choi JW, Roh HG, et al. Imaging parameters of high grade gliomas in relation to the MGMT promoter methylation status: the CT, diffusion tensor imaging, and perfusion MR imaging[J]. Neuroradiology, 2012, 54(6): 555-563. DOI: 10.1007/s00234-011-0947-y.
[9]
Ahn SS, Shin NY, Chang JH, et al. Prediction of methylguanine methyltransferase promoter methylation in glioblastoma using dynamic contrast-enhanced magnetic resonance and diffusion tensor imaging[J]. J Neurosurg, 2014, 121(2): 367-373. DOI: 10.3171/2014.5.Jns132279.
[10]
Mcaleenan A, Kelly C, Spiga F, et al. Prognostic value of test(s) for O6‐methylguanine-DNA methyltransferase (MGMT) promoter methylation for predicting overall survival in people with glioblastoma treated with temozolomide[J/OL]. Cochrane Database Syst Rev. 2021, 3(3) [2022-04-20]. https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD013316.pub2/full. DOI: 10.1002/14651858.CD013316.pub2.
[11]
Zhang H, Schneider T, Wheeler-Kingshott CA, et al. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain[J]. Neuroimage, 2012, 61(4): 1000-1016. DOI: 10.1016/j.neuroimage.2012.03.072.
[12]
Xie Y, Li S, Shen N, et al. Assessment of Isocitrate Dehydrogenase 1 Genotype and Cell Proliferation in Gliomas Using Multiple Diffusion Magnetic Resonance Imaging[J/OL]. Front Neurosci, 2021, 15 [2022-04-20]. https://www.frontiersin.org/articles/10.3389/fnins.2021.783361/full. DOI: 10.3389/fnins.2021.783361.
[13]
Gao A, Zhang H, Yan X, et al. Whole-Tumor Histogram Analysis of Multiple Diffusion Metrics for Glioma Genotyping[J]. Radiology, 2022, 302(3): 652-661. DOI: 10.1148/radiol.210820.
[14]
Zhao J, Li JB, Wang JY, et al. Quantitative analysis of neurite orientation dispersion and density imaging in grading gliomas and detecting IDH-1 gene mutation status[J]. NeuroImage: Clin, 2018, 19: 174-181. DOI: 10.1016/j.nicl.2018.04.011.
[15]
Li SH, Jiang RF, Zhang J, et al. Application of Neurite Orientation Dispersion and Density Imaging in Assessing Glioma Grades and Cellular Proliferation[J/OL]. World Neurosurg, 2019, 131 [2022-04-20]. https://linkinghub.elsevier.com/retrieve/pii/S1878875019320273. DOI: 10.1016/j.wneu.2019.07.121.
[16]
Uxa S, Castillo-Binder P, Kohler R, et al. Ki-67 gene expression[J]. Cell Death Differ, 2021, 28(12): 3357-3570. DOI: 10.1038/s41418-021-00823-x.
[17]
Jiang R, Jiang J, Zhao L, et al. Diffusion kurtosis imaging can efficiently assess the glioma grade and cellular proliferation[J]. Oncotarget, 2015, 6(39): 42380-42393. DOI: 10.18632/oncotarget.5675.
[18]
Wang P, Weng L, Xie S, et al. Primary application of mean apparent propagator-MRI diffusion model in the grading of diffuse glioma[J/OL]. Eur J Radiol. 2021, 138 [2022-04-20]. https://linkinghub.elsevier.com/retrieve/pii/S0720048X21001029. DOI: 10.1016/j.ejrad.2021.109622.
[19]
Sun Y, Su C, Deng K, et al. Mean apparent propagator-MRI in evaluation of glioma grade, cellular proliferation, and IDH-1 gene mutation status[J]. Eur Radiol, 2022, 32(6): 3744-3754. DOI: 10.1007/s00330-021-08522-4.
[20]
Zhang S, Rauch GM, Adrada BE, et al. Assessment of Early Response to Neoadjuvant Systemic Therapy in Triple-Negative Breast Cancer Using Amide Proton Transfer-weighted Chemical Exchange Saturation Transfer MRI: A Pilot Study[J/OL]. Radiol Imaging Cancer, 2021, 3(5) [2022-04-20]. https://pubs.rsna.org/doi/10.1148/rycan.2021200155. DOI: 10.1148/rycan.2021200155.
[21]
Sotirios B, Demetriou E, Topriceanu CC, et al. The role of APT imaging in gliomas grading: A systematic review and meta-analysis[J/OL]. Eur J Radiol, 2020, 133 [2022-04-20]. https://linkinghub.elsevier.com/retrieve/pii/S0720048X20305428. DOI: 10.1016/j.ejrad.2020.109353.
[22]
Park JE, Lee JY, Kim HS, et al. Amide proton transfer imaging seems to provide higher diagnostic performance in post-treatment high-grade gliomas than methionine positron emission tomography[J]. Eur Radiol, 2018, 28(8): 3285-3295. DOI: 10.1007/s00330-018-5341-2.
[23]
Jiang S, Zou T, Eberhart CG, et al. Predicting IDH mutation status in grade Ⅱ gliomas using amide proton transfer-weighted (APTw) MRI[J]. Magn Reson Med, 2017, 78(3): 1100-1109. DOI: 10.1002/mrm.26820.
[24]
Joo B, Han K, Ahn SS, et al. Amide proton transfer imaging might predict survival and IDH mutation status in high-grade glioma[J]. Eur Radiol, 2019, 29(12): 6643-6652. DOI: 10.1007/s00330-019-06203-x.
[25]
Xu Z, Ke C, Liu J, et al. Diagnostic performance between MR amide proton transfer (APT) and diffusion kurtosis imaging (DKI) in glioma grading and IDH mutation status prediction at 3 T[J/OL]. Eur J Radiol, 2021, 134 [2022-04-20]. https://linkinghub.elsevier.com/retrieve/pii/S0720048X20306562. DOI: 10.1016/j.ejrad.2020.109466.
[26]
Han Y, Wang W, Yang Y, et al. Amide Proton Transfer Imaging in Predicting Isocitrate Dehydrogenase 1 Mutation Status of Grade Ⅱ/Ⅲ Gliomas Based on Support Vector Machine[J/OL]. Front Neurosci, 2020, 14 [2022-04-20]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7047712. DOI: 10.3389/fnins.2020.00144.
[27]
Paech D, Windschuh J, Oberhollenzer J, et al. Assessing the predictability of IDH mutation and MGMT methylation status in glioma patients using relaxation-compensated multipool CEST MRI at 7.0 T[J]. Neuro Oncol, 2018, 20(12): 1661-1671. DOI: 10.1093/neuonc/noy073.
[28]
Jiang S, Rui Q, Wang Y, et al. Discriminating MGMT promoter methylation status in patients with glioblastoma employing amide proton transfer-weighted MRI metrics[J]. Eur Radiol, 2017, 28(5): 2115-2123. DOI: 10.1007/s00330-017-5182-4.
[29]
Suh CH, Kim HS, Jung SC, et al. 2-Hydroxyglutarate MR spectroscopy for prediction of isocitrate dehydrogenase mutant glioma: a systemic review and meta-analysis using individual patient data[J]. Neuro Oncol, 2018, 20(12): 1573-1583. DOI: 10.1093/neuonc/noy113.
[30]
Nagashima H, Tanaka K, Sasayama T, et al. Diagnostic value of glutamate with 2-hydroxyglutarate in magnetic resonance spectroscopy for IDH1 mutant glioma[J]. Neuro Oncol, 2016, 18(11): 1559-1568. DOI: 10.1093/neuonc/now090.
[31]
Suh CH, Kim HS, Park JE, et al. Comparative Value of 2-Hydroxyglutarate-to-Lipid and Lactate Ratio versus 2-Hydroxyglutarate Concentration on MR Spectroscopic Images for Predicting Isocitrate[J/OL]. Radiol Imaging Cancer, 2020, 2(4) [2022-04-20]. https://pubs.rsna.org/doi/10.1148/rycan.2020190083. DOI: 10.1148/rycan.2020190083.
[32]
De La Fuente MI, Young RJ, Rubel J, et al. Integration of 2-hydroxyglutarate-proton magnetic resonance spectroscopy into clinical practice for disease monitoring in isocitrate dehydrogenase-mutant glioma[J]. Neuro Oncol, 2015, 18(2): 283-290. DOI: 10.1093/neuonc/nov307.
[33]
Patel SH, Poisson LM, Brat DJ, et al. T2-FLAIR Mismatch, an Imaging Biomarker for IDH and 1p/19q Status in Lower-grade Gliomas: A TCGA/TCIA Project[J]. Clin Cancer Res, 2017, 23(20): 6078-6085. DOI: 10.1158/1078-0432.ccr-17-0560.
[34]
Goyal A, Yolcu YU, Goyal A, et al. The T2-FLAIR-mismatch sign as an imaging biomarker for IDH and 1p/19q status in diffuse low-grade gliomas: a systematic review with a Bayesian approach to evaluation of diagnostic test performance[J/OL]. Neurosurg Focus, 2019, 47(6) [2022-04-20]. https://thejns.org/focus/view/journals/neurosurg-focus/47/6/article-pE13.xml. DOI: 10.3171/2019.9.Focus19660.
[35]
Park SI, Suh CH, Guenette JP, et al. The T2-FLAIR mismatch sign as a predictor of IDH-mutant, 1p/19q-noncodeleted lower-grade gliomas: a systematic review and diagnostic meta-analysis[J]. Eur Radiol, 2021, 31(7): 5289-5299. DOI: 10.1007/s00330-020-07467-4.
[36]
Lasocki A, Gaillard F, Gorelik A, et al. MRI Features Can Predict 1p/19q Status in Intracranial Gliomas[J]. AJNR Am J Neuroradiol, 2018, 39(4): 687-692. DOI: 10.3174/ajnr.a5572.
[37]
Broen MPG, Smits M, Wijnenga MMJ, et al. The T2-FLAIR mismatch sign as an imaging marker for non-enhancing IDH-mutant, 1p/19q-intact lower-grade glioma: a validation study[J]. Neuro Oncol, 2018, 20(10): 1393-1399. DOI: 10.1093/neuonc/noy048.
[38]
Peng X, Yishuang C, Kaizhou Z, et al. Conventional Magnetic Resonance Features for Predicting 1p19q Codeletion Status of World Health Organization Grade Ⅱ and Ⅲ Diffuse Gliomas[J]. J Comput Assist Tomogr, 2019, 43(2): 269-276. DOI: 10.1097/rct.0000000000000816.
[39]
Juratli TA, Tummala SS, Riedl A, et al. Radiographic assessment of contrast enhancement and T2/FLAIR mismatch sign in lower grade gliomas: correlation with molecular groups[J]. J Neurooncol, 2018, 141(2): 327-335. DOI: 10.1007/s11060-018-03034-6.
[40]
Johnson DR, Kaufmann TJ, Patel SH, et al. There is an exception to every rule-T2-FLAIR mismatch sign in gliomas[J]. Neuroradiology, 2019, 61(2): 225-227. DOI: 10.1007/s00234-018-2148-4.
[41]
Yeniçeri İÖ, Yıldız ME, Özduman K, et al. The reliability and interobserver reproducibility of T2/FLAIR mismatch in the diagnosis of IDH-mutant astrocytomas[J]. Diagn Interv Radiol, 2021, 27(6): 796-801. DOI: 10.5152/dir.2021.20624.
[42]
Adamou A, Beltsios ET, Papanagiotou P. The T2-FLAIR Mismatch Sign as an Imaging Indicator of IDH-Mutant, 1p/19q Non-Codeleted Lower Grade Gliomas: A Systematic Review and Diagnostic Accuracy Meta-Analysis[J/OL]. Diagnostics (Basel), 2021, 11(9) [2022-04-20]. https://www.mdpi.com/2075-4418/11/9/1620. DOI: 10.3390/diagnostics11091620.
[43]
Foltyn M, Nieto Taborda KN, Neuberger U, et al. T2/FLAIR-mismatch sign for noninvasive detection of IDH-mutant 1p/19q non-codeleted gliomas: validity and pathophysiology[J/OL]. Neurooncol Adv, 2020, 2(1) [2022-04-20]. https://academic.oup.com/noa/article/2/1/vdaa004/5699871. DOI: 10.1093/noajnl/vdaa004.
[44]
Fujita Y, Sasayama T, Nagashima H, et al. NIMG-14. THE RELATION BETWEEN T2-FLAIR MISMATCH SIGN AND ADC VALUES REFLECTING PATHOLOGICAL MICROSTRUCTURE IN LOWER-GRADE GLIOMAS[J/OL]. Neuro Oncol, 2019, 21(Suppl_6) [2022-04-20]. https://academic.oup.com/neuro-oncology/article/21/Supplement_6/vi164/5619759. DOI: 10.1093/neuonc/noz175.686.
[45]
Fujita Y, Nagashima H, Tanaka K, et al. The Histopathologic and Radiologic Features of T2-FLAIR Mismatch Sign in IDH-Mutant 1p/19q Non-codeleted Astrocytomas[J/OL]. World Neurosurg, 2021, 149 [2022-04-20]. https://linkinghub.elsevier.com/retrieve/pii/S1878875021002345. DOI: 10.1016/j.wneu.2021.02.042.
[46]
Deguchi S, Oishi T, Mitsuya K, et al. Clinicopathological analysis of T2-FLAIR mismatch sign in lower-grade gliomas[J/OL]. Sci Rep, 2020, 10(1) [2022-04-20]. https://www.nature.com/articles/s41598-020-67244-7. DOI: 10.1038/s41598-020-67244-7.
[47]
Throckmorton P, Graber JJ. T2-FLAIR mismatch in isocitrate dehydrogenase mutant astrocytomas: Variability and evolution[J/OL]. Neurology, 2020, 95(11) [2022-04-20]. https://n.neurology.org/content/95/11/e1582. DOI: 10.1212/wnl.0000000000010324.
[48]
Kinoshita M, Arita H, Takahashi M, et al. Impact of Inversion Time for FLAIR Acquisition on the T2-FLAIR Mismatch Detectability for IDH-Mutant, Non-CODEL Astrocytomas[J/OL]. Front Oncol, 2021, 10 [2022-04-20].https://www.frontiersin.org/articles/10.3389/fonc.2020.596448/full. DOI: 10.3389/fonc.2020.596448.
[49]
Lee MK, Park JE, Jo Y, et al. Advanced imaging parameters improve the prediction of diffuse lower-grade gliomas subtype, IDH mutant with no 1p19q codeletion: added value to the T2/FLAIR mismatch sign[J]. Eur Radiol, 2019, 30(2): 844-854. DOI: 10.1007/s00330-019-06395-2.
[50]
Aliotta E, Dutta SW, Feng X, et al. Automated apparent diffusion coefficient analysis for genotype prediction in lower grade glioma: association with the T2-FLAIR mismatch sign[J]. J Neurooncol, 2020, 149(2): 325-335. DOI: 10.1007/s11060-020-03611-8.

PREV Research progress of multimodal magnetic resonance imaging in the diagnosis and differential diagnosis of glioblastoma and brain metastases
NEXT Application progress of myelin sheath probe in demyelinating diseases
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn