Share:
Share this content in WeChat
X
Review
Progress of new MRI technology in parotid gland tumors
WANG Yihua  WANG Lijun 

Cite this article as: Wang YH, Wang LJ. Progress of new MRI technology in parotid gland tumors[J]. Chin J Magn Reson Imaging, 2022, 13(8): 139-141, 157. DOI:10.12015/issn.1674-8034.2022.08.031.


[Abstract] The pathological types of parotid gland tumors are diverse and the differential diagnosis of parotid gland tumors is difficult. The images of different types of parotid gland tumors are similar sometimes. Conventional MR imaging is often difficult to distinguish the tumor types. In recent years, a series of new magnetic resonance technologies, such as diffusion-weighted imaging, arterial spin labeling, susceptibility-weighted imaging, amide proton transfer weighted imaging has been developed rapidly and radiomics has been applied to parotid gland tumors. These new technologies can not only improve the sensitivity in discovering tumors but analyze the blood perfusion and tissue metabolism of tumors quantitatively. To extract the imaging features of tumors and establish models, it can provide more accurate supplementary information for the diagnosis of parotid tumors. This paper has reviewed the progress of MRI technology and applications of radiomics in parotid gland tumors to improve the comprehensive assessment of parotid gland tumors.
[Keywords] parotid gland tumors;magnetic resonance imaging;diffusion-weighted imaging;arterial spin labeling;susceptibility-weighted imaging;radiomics;amide proton transfer weighted imaging

WANG Yihua   WANG Lijun*  

Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China

Wang LJ, E-mail: wanglj345@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Natural Science Foundation of Liaoning Province (No. 20180550719).
Received  2022-01-18
Accepted  2022-08-10
DOI: 10.12015/issn.1674-8034.2022.08.031
Cite this article as: Wang YH, Wang LJ. Progress of new MRI technology in parotid gland tumors[J]. Chin J Magn Reson Imaging, 2022, 13(8): 139-141, 157. DOI:10.12015/issn.1674-8034.2022.08.031.

[1]
Xu Z, Chen M, Zheng S, et al. Differential diagnosis of parotid gland tumours: Application of SWI combined with DWI and DCE-MRI[J/OL]. Eur J Radiol, 2022, 146 [2022-01-18]. https://linkinghub.elsevier.com/retrieve/pii/S0720048X21005751. DOI: 10.1016/j.ejrad.2021.110094.
[2]
Gökçe E. Multiparametric Magnetic resonance imaging for the diagnosis and differential diagnosis of parotid gland tumors[J]. J Magn Reson Imaging, 2020, 52(1): 11-32. DOI: 10.1002/jmri.27061.
[3]
Baohong W, Jing Z, Zanxia Z, et al. T2 mapping and readout segmentation of long variable echo-train diffusion-weighted imaging for the differentiation of parotid gland tumors[J/OL]. Eur J Radiol, 2022, 151 [2022-01-18]. https://linkinghub.elsevier.com/retrieve/pii/S0720048X22001152. DOI: 10.1016/j.ejrad.2022.110265.
[4]
Huang N, Xiao Z, Chen Y, et al. Quantitative dynamic contrast-enhanced MRI and readout segmentation of long variable echo-trains diffusion-weighted imaging in differentiating parotid gland tumors[J]. Neuroradiology, 2021, 63(10): 1709-1719. DOI: 10.1007/s00234-021-02758-z.
[5]
Orhan Soylemez UP, Atalay B. Differentiation of Benign and Malignant Parotid Gland Tumors with MRI and Diffusion Weighted Imaging[J]. Medeni Med J, 2021, 36(2): 138-145. DOI: 10.5222/MMJ.2021.84666.
[6]
Jiang JS, Zhu LN, Chen W, et al. Added value of susceptibility-weighted imaging to diffusion-weighted imaging in the characterization of parotid gland tumors[J]. Eur Arch Otorhinolaryngol, 2020, 277(10): 2839-2846. DOI: 10.1007/s00405-020-05985-x.
[7]
Mikaszewski B, Markiet K, Smugała A, et al. Clinical and demographic data improve diagnostic accuracy of dynamic contrast-enhanced and diffusion-weighted MRI in differential diagnostics of parotid gland tumors[J/OL]. Oral Oncol, 2020, 111 [2022-01-18]. https://linkinghub.elsevier.com/retrieve/pii/S1368837520303687. DOI: 10.1016/j.oraloncology.2020.104932.
[8]
Jia CH, Wang SY, Li Q, et al. Conventional, diffusion, and dynamic contrast-enhanced MRI findings for differentiating metaplastic Warthin's tumor of the parotid gland[J/OL]. Sci Prog, 2021, 104(2) [2022-01-18]. https://journals.sagepub.com/doi/10.1177/00368504211018583. DOI: 10.1177/00368504211018583.
[9]
Khalek ARA. Characterization of salivary gland tumours with diffusion tensor imaging[J/OL]. Dentomaxillofac Radiol, 2018, 47(5) [2022-01-18]. https://www.birpublications.org/doi/10.1259/dmfr.20170343. DOI: 10.1259/dmfr.20170343.
[10]
Huang N, Chen Y, She D, et al. Diffusion kurtosis imaging and dynamic contrast-enhanced MRI for the differentiation of parotid gland tumors[J]. Eur Radiol, 2022, 32(4): 2748-2759. DOI: 10.1007/s00330-021-08312-y.
[11]
Patella F, Sansone M, Franceschelli G, et al. Quantification of heterogeneity to classify benign parotid tumors: a feasibility study on most frequent histotypes[J]. Future Oncol, 2020, 16(12): 763-778. DOI: 10.2217/fon-2019-0736.
[12]
Markiet K, Glinska A, Nowicki T, et al. Feasibility of intravoxel incoherent motion (IVIM) and dynamic contrast-enhanced Magnetic Resonance Imaging (DCE-MRI) in differentiation of benign parotid gland tumors[J/OL]. Biology (Basel), 2022, 11(3) [2022-01-18]. https://www.mdpi.com/2079-7737/11/3/399. DOI: 10.3390/biology11030399.
[13]
Ma G, Xu XQ, Zhu LN, et al. Intravoxel incoherent motion Magnetic Resonance Imaging for assessing parotid gland tumors: correlation and comparison with arterial spin labeling imaging[J]. Korean J Radiol, 2021, 22(2): 243-252. DOI: 10.3348/kjr.2020.0290.
[14]
Yamamoto T, Kimura H, Hayashi K, et al. Pseudo-continuous arterial spin labeling MR images in Warthin tumors and pleomorphic adenomas of the parotid gland: qualitative and quantitative analyses and their correlation with histopathologic and DWI and dynamic contrast enhanced MRI findings[J]. Neuroradiology, 2018, 60(8): 803-812. DOI: 10.1007/s00234-018-2046-9.
[15]
Lv HY, Luo NB, Lai SL, et al. Preliminary study of 3.0T MR arterial spin labeling in the diagnosis of parotid gland tumors[J]. Radiol Pract, 2021, 36(3): 346-350. DOI: 10.13609/j.cnki.1000-0313.2021.03.011.
[16]
Abdel Razek AA. Multi-parametric MR imaging using pseudo-continuous arterial-spin labeling and diffusion-weighted MR imaging in differentiating subtypes of parotid tumors[J]. Magn Reson Imaging, 2019, 63(1): 55-59. DOI: 10.1016/j.mri.2019.08.005.
[17]
Di Ieva A, Lam T, Alcaide-Leon P, et al. Magnetic resonance susceptibility weighted imaging in neurosurgery: current applications and future perspectives[J]. J Neurosurg, 2015, 123(6): 1463-1475. DOI: 10.3171/2015.1.JNS142349.
[18]
Zhai JN, Zuo ZC, Wang P, et al. The diagnostic value of conventional MRI combined with SWI in the differential diagnosis of benign parotid gland lesions[J]. J Clin Radiol, 2018, 37(11): 1810-1814. DOI: 10.13437/j.cnki.jcr.2018.11.012.
[19]
Law B, King AD, Ai QY, et al. Head and neck tumors: amide proton transfer MRI[J]. Radiology, 2018, 288(3): 782-790. DOI: 10.1148/radiol.2018171528.
[20]
Kamitani T, Sagiyama K, Togao O, et al. Amide proton transfer (APT) imaging of parotid tumors: Differentiation of malignant and benign tumors[J/OL]. Eur J Radiol, 2020, 129 [2022-01-18]. https://linkinghub.elsevier.com/retrieve/pii/S0720048X20302369. DOI: 10.1016/j.ejrad.2020.109047.
[21]
Bae YJ, Choi BS, Jeong WJ, et al. Amide proton transfer-weighted MRI in the diagnosis of major salivary gland tumors[J/OL]. Sci Rep, 2019, 9(1) [2022-01-18]. https://www.nature.com/articles/s41598-019-44820-0. DOI: 10.1038/s41598-019-44820-0.
[22]
Chen Y, Wang X, Su T, et al. Feasibility evaluation of amide proton transfer-weighted imaging in the parotid glands: a strategy to recognize artifacts and measure APT value[J]. Quant Imaging Med Surg, 2021, 11(6): 2279-2291. DOI: 10.21037/qims-20-675.
[23]
Zhang LW, Fang MJ, Zang YL, et al. Development and application of imaging radiomics[J]. Chin J Radiol, 2017, 51(1): 75-77. DOI: 10.3760/cma.j.issn.1005-1201.2017.01.017.
[24]
Sumi M, Nakamura T. Salivary gland carcinoma: Prediction of cancer death risk based on apparent diffusion coefficient histogram profiles[J/OL]. PLoS One, 2018 [2022-01-18]. https://doi.org/10.1371/journal.pone.0200291.
[25]
Chen P, Dong B, Zhang C, et al. The histogram analysis of apparent diffusion coefficient in differential diagnosis of parotid tumor[J/OL]. Dentomaxillofac Radiol, 2020, 49(5) [2022-01-18]. https://www.birpublications.org/doi/10.1259/dmfr.20190420. DOI: 10.1259/dmfr.20190420.
[26]
Abdel RA, Gadelhak BN, El ZI, et al. Diffusion-weighted imaging with histogram analysis of the apparent diffusion coefficient maps in the diagnosis of parotid tumours[J]. Int J Oral Maxillofac Surg, 2021, 51(2): 166-174. DOI: 10.1016/j.ijom.2021.03.019.
[27]
Xiang S, Ren J, Xia Z, et al. Histogram analysis of dynamic contrast-enhanced magnetic resonance imaging in the differential diagnosis of parotid tumors[J/OL]. BMC Med Imaging, 2021, 21(1) [2022-01-18]. https://bmcmedimaging.biomedcentral.com/articles/10.1186/s12880-021-00724-y. DOI: 10.1186/s12880-021-00724-y.
[28]
Wen B, Zhang Z, Zhu J, et al. Apparent diffusion coefficient map-based radiomics features for differential diagnosis of pleomorphic adenomas and Warthin tumors from malignant tumors[J/OL]. Front Oncol, 2022 [2022-01-18]. https://pubmed.ncbi.nlm.nih.gov/35747827/. DOI: 10.3389/fonc.2022.830496.
[29]
Cosimo N, Maddalena T, Micheie P, et al. Texture analysis in the characterization of parotid salivary gland lesions:A study on MR diffusion weighted imaging[J/OL]. Eur J Radiol, 2021, 136 [2022-01-18]. https://linkinghub.elsevier.com/retrieve/pii/S0720048X21000097. DOI: 10.1016/j.ejrad.2021.109529.
[30]
Xia X, Feng B, Wang J, et al. Deep learning for differentiating benign from malignant parotid lesions on MR Images[J/OL]. Front Oncol, 2021, 11 [2022-01-18]. https://www.frontiersin.org/articles/10.3389/fonc.2021.632104/full. DOI: 10.3389/fonc.2021.632104.
[31]
Faggioni L, Gabelloni M, De Vietro F, et al. Usefulness of MRI-based radiomic features for distinguishing Warthin tumor from pleomorphic adenoma: performance assessment using T2-weighted and post-contrast T1-weighted MR images[J/OL]. Eur J Radiol Open, 2022 [2022-01-18]. https://doi.org/10.1016/j.ejro.2022.100429. DOI: 10.1016/j.ejro.2022.100429.
[32]
Piludu F, Marzi S, Ravanelli M, et al. MRI-Based Radiomics to Differentiate between Benign and Malignant Parotid Tumors With External Validation[J/OL]. Front Oncol, 2021 [2022-01-18]. https://pubmed.ncbi.nlm.nih.gov/33987092/. DOI: 10.3389/fonc.2021.656918.
[33]
Qi JB, Gao AK, Bai J, et al. Clinical application value of MR-based radiomics for differentiation of benign and malignant of parotid gland[J]. Chin J Magn Reson Imaging, 2022, 13(5): 34-39. DOI: 10.12015/issn.1674-8034.2022.05.007.
[34]
Baba A, Kessoku H, Akutsu T, et al. Pre-treatment MRI predictor of high-grade malignant parotid gland cancer[J]. Oral Radiol, 2021, 37(4): 611-616. DOI: 10.1007/s11282-020-00498-z.
[35]
Zheng YM, Li J, Liu S, et al. MRI-Based radiomics nomogram for differentiation of benign and malignant lesions of the parotid gland[J]. Eur Radiol, 2021, 31(6): 4042-4052. DOI: 10.1007/s00330-020-07483-4.
[36]
Zheng YM, Chen J, Xu Q, et al. Development and validation of an MRI-based radiomics nomogram for distinguishing Warthin's tumour from pleomorphic adenomas of the parotid gland[J/OL]. Dentomaxillofac Radiol, 2021, 50(7) [2022-01-18]. https://www.birpublications.org/doi/10.1259/dmfr.20210023. DOI: 10.1259/dmfr.20210023.
[37]
Vernuccio F, Arnone F, Cannella R, et al. Diagnostic performance of qualitative and radiomics approach to parotid gland tumors: which is the added benefit of texture analysis?[J/OL]. Br J Radiol, 2021, 94(1128) [2022-01-18]. https://www.birpublications.org/doi/10.1259/bjr.20210340. DOI: 10.1259/bjr.20210340.

PREV Application progress of myelin sheath probe in demyelinating diseases
NEXT Cardiac magnetic resonance imaging sequence of epicardial adipose tissue and research progress
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn