Share:
Share this content in WeChat
X
Review
Progress in MRI study of brain structure and functional alterations in patients with Crohn's disease
TANG Wuli  LI Kang 

Cite this article as: Tang WL, Li K. Progress in MRI study of brain structure and functional alterations in patients with Crohn's disease[J]. Chin J Magn Reson Imaging, 2022, 13(8): 154-157. DOI:10.12015/issn.1674-8034.2022.08.035.


[Abstract] Crohn's disease (CD) is a kind of recurrent inflammatory bowel disease which has unknown etiology. A growing number of researches suggest that the brain-gut axis plays a critical role in the development of this disease, and some patients present clinical symptoms such as anxiety, depression, and psychological disorders. However, long-term anxiety, depression or high psychological stress may lead to the recurrence of the disease. Therefore, the psycho-psychiatric status of the patients should be high valued in the treatment process. Currently, functional magnetic resonance imaging, which includes task state and resting state, has been widely used to study structural and functional aspects of the brain, and some progress has been made. This article reviews the progress of MRI research on structural and functional brain alterations in patients with CD, so as to provide a neuroimaging basis for further optimizing the treatment strategies of these patients.
[Keywords] Crohn's disease;functional magnetic resonance imaging;brain-gut axis;anxiety;depression

TANG Wuli1, 2   LI Kang2*  

1 Chongqing Medical University, Chongqing 400016, China

2 Department of Radiology, Chongqing General Hospital, Chongqing 401147, China

Li K, E-mail: likangdoctor@126.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Chongqing Science and Technology Bureau of Science and Technology Innovation and Application Development Special (No. cstc2020jscx-sbqwX0015); Chongqing Science and Health Joint Project (No. 2019ZDXM008).
Received  2022-03-31
Accepted  2022-07-26
DOI: 10.12015/issn.1674-8034.2022.08.035
Cite this article as: Tang WL, Li K. Progress in MRI study of brain structure and functional alterations in patients with Crohn's disease[J]. Chin J Magn Reson Imaging, 2022, 13(8): 154-157. DOI:10.12015/issn.1674-8034.2022.08.035.

[1]
Palmese F, Del Toro R, Di Marzio G, et al. Sarcopenia and vitamin D deficiency in patients with Crohn's disease: pathological conditions that should be linked together[J/OL]. Nutrients, 2021, 13(4) [2022-03-31]. https://go.exlibris.link/Tkz9rVjM. DOI: 10.3390/nu13041378.
[2]
Torres J, Mehandru S, Colombel J, et al. Crohn's disease[J]. The Lancet, 2017, 389(10080): 1741-1755. DOI: 10.1016/S0140-6736(16)31711-1.
[3]
Ng SC, Shi HY, Hamidi N, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies[J]. The Lancet, 2017, 390(10114): 2769-2778. DOI: 10.1016/S0140-6736(17)32448-0.
[4]
Lv H, Jin M, Zhang H, et al. Increasing newly diagnosed inflammatory bowel disease and improving prognosis in China: a 30-year retrospective study from a single centre[J/OL]. Bmc Gastroenterol, 2020, 20(1) [2022-03-31]. https://link.springer.com/content/pdf/10.1186/s12876-020-01527-1.pdf. DOI: 10.1186/s12876-020-01527-1.
[5]
King JA, Underwood FE, Panaccione N, et al. Trends in hospitalisation rates for inflammatory bowel disease in western versus newly industrialised countries: a population-based study of countries in the Organisation for Economic Co-operation and Development[J]. Lancet Gastroenterol Hepatol, 2019, 4(4): 287-295. DOI: 10.1016/S2468-1253(19)30013-5.
[6]
Mak WY, Zhao M, Ng SC, et al. The epidemiology of inflammatory bowel disease: East meets west[J]. J Gastroenterol Hepatol, 2020, 35(3): 380-389. DOI: 10.1111/jgh.14872.
[7]
Lin WC, Weng MT, Tung CC, et al. Trends and risk factors of mortality analysis in patients with inflammatory bowel disease:a Taiwanese nationwide population-based study[J/OL]. J Transl Med, 2019, 17(1) [2022-03-31]. https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-019-02164-3. DOI: 10.1186/s12967-019-02164-3.
[8]
Roda G, Chien NS, Kotze PG, et al. Crohn's disease[J/OL]. Nat Rev Dis Primers, 2020, 6(1) [2022-03-31]. http://www.nature.com/articles/s41572-020-0156-2.pdf. DOI: 10.1038/s41572-020-0156-2.
[9]
Le Berre C, Ananthakrishnan AN, Danese S, et al. Ulcerative colitis and Crohn's disease have similar burden and goals for treatment[J]. Clin Gastroenterol Hepatol, 2020, 18(1): 14-23. DOI: 10.1016/j.cgh.2019.07.005.
[10]
Cohen MS, Bookheimer SY. Localization of brain function using magnetic resonance imaging[J]. Trends Neurosci, 1994, 17(7): 268-277. DOI: 10.1016/0166-2236(94)90055-8.
[11]
Li HD, Wang J, Niu JL. MRI research progress of brain function and structure in patients with major depressive disorder before and after treatment[J]. Chin J Magn Reson Imaging, 2022, 13(3): 143-146. DOI: 10.12015/issn.1674-8034.2022.03.035.
[12]
Gonzalez-Castillo J, Kam JWY, Hoy CW, et al. How to interpret resting-state fMRI: ask your participants[J]. The Journal of Neuroscience, 2021, 41(6): 1130-1141. DOI: 10.1523/JNEUROSCI.1786-20.2020.
[13]
Huang M, Li X, Fan W, et al. Alterations of regional homogeneity in Crohn's disease with psychological disorders: a resting-state fMRI study[J/OL]. Front Neurol, 2022, 13 [2022-03-31]. https://go.exlibris.link/vrFHbfXx. DOI: 10.3389/fneur.2022.817556.
[14]
Zhang S, Chen F, Wu J, et al. Altered structural covariance and functional connectivity of the insula in patients with Crohn's disease[J]. Quant Imag Med Surg, 2022, 12(2): 1020-1036. DOI: 10.21037/qims-21-509.
[15]
Petruo VA, Krauss E, Kleist A, et al. Perceived distress, personality characteristics, coping strategies and psychosocial impairments in a national German multicenter cohort of patients with Crohn's disease and ulcerative colitis[J]. Z Gastroenterol, 2019, 57(4): 473-483. DOI: 10.1055/a-0838-6371.
[16]
Barberio B, Zamani M, Black CJ, et al. Prevalence of symptoms of anxiety and depression in patients with inflammatory bowel disease: a systematic review and meta-analysis[J]. Lancet Gastroenterol Hepatol, 2021, 6(5): 359-370. DOI: 10.1016/s2468-1253(21)00014-5.
[17]
Gao X, Tang Y, Lei N, et al. Symptoms of anxiety/depression is associated with more aggressive inflammatory bowel disease[J/OL]. Sci Rep-Uk, 2021, 11 [2022-03-31]. https://go.exlibris.link/CQT6hq4b. DOI: 10.1038/s41598-021-81213-8.
[18]
Mikocka-Walus A, Pittet V, Rossel J, et al. Symptoms of depression and anxiety are independently associated with clinical recurrence of inflammatory bowel disease[J]. Clin Gastroenterol H, 2016, 14(6): 829-835. DOI: 10.1016/j.cgh.2015.12.045.
[19]
Rubio A, Pellissier S, Van Oudenhove L, et al. Brain responses to uncertainty about upcoming rectal discomfort in quiescent Crohn's disease-a fMRI study[J]. Neurogastroenterol Motil, 2016, 28(9): 1419-1432. DOI: 10.1111/nmo.12844.
[20]
Capuco A, Urits I, Hasoon J, et al. Current perspectives on gut microbiome dysbiosis and depression[J]. Adv Ther, 2020, 37(4): 1328-1346. DOI: 10.1007/s12325-020-01272-7.
[21]
Shi H, Wang Q, Zheng M, et al. Supplement of microbiota-accessible carbohydrates prevents neuroinflammation and cognitive decline by improving the gut microbiota-brain axis in diet-induced obese mice[J/OL]. J Neuroinflamm, 2020, 17 [2022-03-31]. http://link.springer.com/content/pdf/10.1186/s12974-020-01760-1.pdf. DOI: 10.1186/s12974-020-01760-1.
[22]
Zhu S, Jiang Y, Xu K, et al. The progress of gut microbiome research related to brain disorders[J/OL]. J Neuroinflamm, 2020, 17 [2022-03-31]. http://link.springer.com/content/pdf/10.1186/s12974-020-1705-z.pdf. DOI: 10.1186/s12974-020-1705-z.
[23]
Gracie DJ, Guthrie EA, Hamlin PJ, et al. Bi-directionality of brain-gut interactions in patients with inflammatory bowel disease[J]. Gastroenterology, 2018, 154(6): 1635-1646. DOI: 10.1053/j.gastro.2018.01.027.
[24]
Osadchiy V, Martin CR, Mayer EA. The gut-brain axis and the microbiome: mechanisms and clinical implications[J]. Clin Gastroenterol Hepatol, 2019, 17(2): 322-332. DOI: 10.1016/j.cgh.2018.10.002.
[25]
Yeung AWK. Structural and functional changes in the brain of patients with Crohn's disease: an activation likelihood estimation meta-analysis[J]. Brain Imaging Behav, 2021, 15(2): 807-818. DOI: 10.1007/s11682-020-00291-w.
[26]
Thomann AK, Schmitgen MM, Kmuche D, et al. Exploring joint patterns of brain structure and function in inflammatory bowel diseases using multimodal data fusion[J/OL]. Neurogastroenterol Motil, 2021, 33(6) [2022-03-31]. https://doi.org/10.1111/nmo.14078. DOI: 10.1111/nmo.14078.
[27]
Li J, Yuan B, Li G, et al. Convergent syndromic atrophy of pain and emotional systems in patients with irritable bowel syndrome and depressive symptoms[J/OL]. Neurosci Lett, 2020, 723 [2022-03-31]. https://linkinghub.elsevier.com/retrieve/pii/S030439402030135X. DOI: 10.1016/j.neulet.2020.134865.
[28]
Bao C, Liu P, Shi Y, et al. Differences in brain gray matter volume in patients with Crohn's disease with and without abdominal pain[J]. Oncotarget, 2017, 8(55): 93624-93632. DOI: 10.18632/oncotarget.21161.
[29]
Bao CH, Liu P, Liu HR, et al. Alterations in brain grey matter structures in patients with Crohn's disease and their correlation with psychological distress[J]. Journal of Crohn's and Colitis, 2015, 9(7): 532-540. DOI: 10.1093/ecco-jcc/jjv057.
[30]
Prüß MS, Bayer A, Bayer K, et al. Functional brain changes due to chronic abdominal pain in inflammatory bowel disease: a case-control magnetic resonance imaging study[J/OL]. Clin Transl Gastroen, 2022, 13(2) [2022-03-31]. https://journals.lww.com/10.14309/ctg.0000000000000453. DOI: 10.14309/ctg.0000000000000453.
[31]
Kornelsen J, Wilson A, Labus JS, et al. Brain resting-state network alterations associated with Crohn's Disease[J/OL]. Front Neurol, 2020, 11 [2022-03-31]. https://www.frontiersin.org/article/10.3389/fneur.2020.00048/full. DOI: 10.3389/fneur.2020.00048.
[32]
Fan Y, Bao C, Wei Y, et al. Altered functional connectivity of the amygdala in Crohn's disease[J]. Brain Imaging Behav, 2020, 14(6): 2097-2106. DOI: 10.1007/s11682-019-00159-8.
[33]
Neeb L, Bayer A, Bayer K, et al. Transcranial direct current stimulation in inflammatory bowel disease patients modifies resting-state functional connectivity: A RCT[J]. Brain Stimul, 2019, 12(4): 978-980. DOI: 10.1016/j.brs.2019.03.001.
[34]
Nair VA, Dodd K, Rajan S, et al. A verbal fluency task-based brain activation fMRI study in patients with Crohn's Disease in remission[J]. J Neuroimaging, 2019, 29(5): 630-639. DOI: 10.1111/jon.12634.
[35]
Agostini A, Filippini N, Benuzzi F, et al. Functional magnetic resonance imaging study reveals differences in the habituation to psychological stress in patients with Crohn's disease versus healthy controls[J]. J Behav Med, 2013, 36(5): 477-487. DOI: 10.1007/s10865-012-9441-1.
[36]
Agostini A, Ballotta D, Righi S, et al. Stress and brain functional changes in patients with Crohn's disease: A functional magnetic resonance imaging study[J/OL]. Neurogastroenterology & Motility, 2017, 29(10) [2022-03-31]. https://onlinelibrary.wiley.com/doi/10.1111/nmo.13108. DOI: 10.1111/nmo.13108.
[37]
Gray MA, Chao CY, Staudacher HM, et al. Anti-TNFalpha therapy in IBD alters brain activity reflecting visceral sensory function and cognitive-affective biases[J/OL]. Plos One, 2018, 13(3) [2022-03-31]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0193542. DOI: 10.1371/journal.pone.0193542.
[38]
Hou J, Dodd K, Nair VA, et al. Alterations in brain white matter microstructural properties in patients with Crohn's disease in remission[J/OL]. Sci Rep, 2020, 10 [2022-03-31]. https://doi.org/10.1038/s41598-020-59098-w. DOI: 10.1038/s41598-020-59098-w.
[39]
Bao C, Liu P, Liu H, et al. Difference in regional neural fluctuations and functional connectivity in Crohn's disease: a resting-state functional MRI study[J]. Brain Imaging Behav, 2018, 12(6): 1795-1803. DOI: 10.1007/s11682-018-9850-z.
[40]
Wang M, Ju Y, Lu X, et al. Longitudinal changes of amplitude of low-frequency fluctuations in MDD patients:A 6-month follow-up resting-state functional magnetic resonance imaging study[J]. J Affect Disord, 2020, 276: 411-417. DOI: 10.1016/j.jad.2020.07.067.
[41]
Wang Q, Wang C, Deng Q, et al. Alterations of regional spontaneous brain activities in anxiety disorders:A meta-analysis[J]. J Affect Disorders, 2022, 296: 233-240. DOI: 10.1016/j.jad.2021.09.062.
[42]
Li L, Ma J, Xu JG, et al. Brain functional changes in patients with Crohn's disease: a resting‐state fMRI study[J/OL]. Brain Behav, 2021, 11(8) [2022-03-31]. https://onlinelibrary.wiley.com/doi/10.1002/brb3.2243. DOI: 10.1002/brb3.2243.
[43]
Fan W, Zhang S, Hu J, et al. Aberrant brain function in active-stage ulcerative colitis patients: a resting-state functional MRI study[J/OL]. Front Hum Neurosci, 2019, 13 [2022-03-31]. https://www.frontiersin.org/article/10.3389/fnhum.2019.00107/full. DOI: 10.3389/fnhum.2019.00107.
[44]
Kong N, Gao C, Xu M, et al. Changes in the anterior cingulate cortex in Crohn's disease: a neuroimaging perspective[J/OL]. Brain Behav, 2021, 11(3) [2022-03-31]. https://onlinelibrary.wiley.com/doi/10.1002/brb3.2003. DOI: 10.1002/brb3.2003.
[45]
Li L, Ma J, Hua X, et al. Altered Intra-and inter-network functional connectivity in patients with Crohn's disease: an independent component analysis-based resting-state functional magnetic resonance imaging study[J/OL]. Front Neurosci-Switz, 2022, 16 [2022-03-31]. https://www.frontiersin.org/articles/10.3389/fnins.2022.855470/full. DOI: 10.3389/fnins.2022.855470.
[46]
Turkiewicz J, Bhatt RR, Wang H, et al. Altered brain structural connectivity in patients with longstanding gut inflammation is correlated with psychological symptoms and disease duration[J/OL]. Neuroimage Clin, 2021, 30 [2022-03-31]. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=33823388&query_hl=1. DOI: 10.1016/j.nicl.2021.102613.
[47]
Liu P, Li R, Bao C, et al. Altered topological patterns of brain functional networks in Crohn's disease[J]. Brain Imaging Behav, 2018, 12(5): 1466-1478. DOI: 10.1007/s11682-017-9814-8.
[48]
Mallio CA, Piervincenzi C, Gianolio E, et al. Absence of dentate nucleus resting-state functional connectivity changes in nonneurological patients with gadolinium-related hyperintensity on T1-weighted images[J]. J Magn Reson Imaging, 2019, 50(2): 445-455. DOI: 10.1002/jmri.26669.

PREV Application and research progress of radiomics in evaluation of pancreatic cancer
NEXT The application research progress of functional imaging in colorectal cancer with peritoneal metastases
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn