Share:
Share this content in WeChat
X
Review
The application research progress of functional imaging in colorectal cancer with peritoneal metastases
LIU Naiqi  YANG Shuohui 

Cite this article as: Liu NQ, Yang SH. The application research progress of functional imaging in colorectal cancer with peritoneal metastases[J]. Chin J Magn Reson Imaging, 2022, 13(8): 158-161. DOI:10.12015/issn.1674-8034.2022.08.036.


[Abstract] Colorectal cancer patients with peritoneal metastases are one of the most common causes of death. Accurate preoperative evaluation and selection of patients are prerequisites for successful surgical treatment. However, multi-slice computed tomography (MSCT) has limitations in assessing peritoneal metastases in colorectal cancer, so additional imaging modalities can be considered to optimize treatment selection. In addition to conventional MSCT, this article reviews the role of several functional imaging in the evaluation of peritoneal metastases from colorectal cancer, including diffusion-weighted magnetic resonance imaging (DWI-MRI), positron emission tomography combined with computed tomography (PET-CT), positron emission tomography combined with magnetic resonance imaging (PET-MRI) and molecular imaging, the application and advantages and disadvantages of the above functional imaging in predicting the surgical outcome of colorectal cancer peritoneal metastases, assessing treatment response and monitoring their recurrence were described in detail.
[Keywords] colorectal cancer;peritoneal metastases;diffusion-weighted magnetic resonance imaging;positron emission tomography combined with computed tomography;positron emission tomography combined with magnetic resonance imaging

LIU Naiqi   YANG Shuohui*  

Department of Radiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China

Yang SH, E-mail: caddie_yang1980@aliyun.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Shanghai "Medical Garden Rising Star" Young Medical Talents Training Funding Program-Medical Imaging Project [No. SHWRS (2020)-087].
Received  2022-04-09
Accepted  2022-08-05
DOI: 10.12015/issn.1674-8034.2022.08.036
Cite this article as: Liu NQ, Yang SH. The application research progress of functional imaging in colorectal cancer with peritoneal metastases[J]. Chin J Magn Reson Imaging, 2022, 13(8): 158-161. DOI:10.12015/issn.1674-8034.2022.08.036.

[1]
Chicago Consensus Working Group. The Chicago consensus on peritoneal surface malignancies: methodology[J]. Cancer, 2020, 126(11): 2513-2515. DOI: 10.1002/cncr.32837.
[2]
Spiliotis J, Halkia E, de Bree E. Treatment of peritoneal surface malignancies with hyperthermic intraperitoneal chemotherapy-current perspectives[J/OL]. Curr Oncol, 2016, 23(3) [2022-04-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4900847. DOI: 10.3747/co.23.2831.
[3]
Group CCW. The Chicago consensus on peritoneal surface malignancies: management of colorectal metastases[J]. Cancer, 2020, 126(11): 2534-2540. DOI: 10.1002/cncr.32874.
[4]
Group CCW. The Chicago consensus on peritoneal surface malignancies: methodology[J]. Ann Surg Oncol, 2020, 27(6): 1741-1742. DOI: 10.1245/s10434-020-08317-9.
[5]
Berger Y, Jacoby H, Kaufmann MI, et al. Correlation between intraoperative and pathological findings for patients undergoing cytoreductive surgery and hyperthermic intraperitoneal chemotherapy[J]. Ann Surg Oncol, 2019, 26(4): 1103-1109. DOI: 10.1245/s10434-019-07219-9.
[6]
Lheureux S, Gourley C, Vergote I, et al. Epithelial ovarian cancer[J]. Lancet, 2019, 393(10177): 1240-1253. DOI: 10.1016/S0140-6736(18)32552-2.
[7]
Liu JY, Geng XF, Li Y. Milky spots: omental functional units and hotbeds for peritoneal cancer metastasis[J]. Tumor Biol, 2016, 37(5): 5715-5726. DOI: 10.1007/s13277-016-4887-3.
[8]
Xue L, Hyman NH, Turaga KK, et al. Peritoneal metastases in colorectal cancer: biology and barriers[J]. J Gastrointest Surg, 2020, 24(3): 720-727. DOI: 10.1007/s11605-019-04441-4.
[9]
Lee EYP, An H, Perucho JAU, et al. Functional tumour burden of peritoneal carcinomatosis derived from DWI could predict incomplete tumour debulking in advanced ovarian carcinoma[J]. Eur Radiol, 2020, 30(10): 5551-5559. DOI: 10.1007/s00330-020-06887-6.
[10]
Harper MM, Kim J, Pandalai PK. Current trends in cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) for peritoneal disease from appendiceal and colorectal malignancies[J/OL]. J Clin Med, 2022, 11(10) [2022-04-09]. https://www.mdpi.com/2077-0383/11/10/2840. DOI: 10.3390/jcm11102840.
[11]
Group CCW. The Chicago consensus guidelines for peritoneal surface malignancies: introduction[J]. Cancer, 2020, 126(11): 2510-2512. DOI: 10.1002/cncr.32827.
[12]
Mikkelsen MS, Petersen LK, Blaakaer J, et al. Assessment of peritoneal metastases with DW-MRI, CT, and FDG PET/CT before cytoreductive surgery for advanced stage epithelial ovarian cancer[J]. Eur J Surg Oncol, 2021, 47(8): 2134-2141. DOI: 10.1016/j.ejso.2021.03.239.
[13]
Engbersen MP, Van' T Sant I, Lok C, et al. MRI with diffusion-weighted imaging to predict feasibility of complete cytoreduction with the peritoneal cancer index (PCI) in advanced stage ovarian cancer patients[J]. Eur J Radiol, 2019, 114: 146-151. DOI: 10.1016/j.ejrad.2019.03.007.
[14]
Chen ZY, Liu ZN, Yang JJ, et al. The clinicopathological characteristics, prognosis, and CT features of ovary metastasis from colorectal carcinoma[J]. Transl Cancer Res, 2021, 10(7): 3248-3258. DOI: 10.21037/tcr-21-605.
[15]
Chow FC, Yip J, Foo DC, et al. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (HIPEC) for colorectal and appendiceal peritoneal metastases-The Hong Kong experience and literature review[J]. Asian J Surg, 2021, 44(1): 221-228. DOI: 10.1016/j.asjsur.2020.05.010.
[16]
An H, Lee EYP, Chiu K, et al. The emerging roles of functional imaging in ovarian cancer with peritoneal carcinomatosis[J]. Clin Radiol, 2018, 73(7): 597-609. DOI: 10.1016/j.crad.2018.03.009.
[17]
Boot J, Gomez-Munoz F, Beets-Tan RGH. Imaging of rectal cancer[J]. Radiologe, 2019, 59(1): 46-50. DOI: 10.1007/s00117-019-0579-5.
[18]
Cianci R, Delli Pizzi A, Patriarca G, et al. Magnetic resonance assessment of peritoneal carcinomatosis: is there a true benefit from diffusion-weighted imaging?[J]. Curr Probl Diagn Radiol, 2020, 49(6): 392-397. DOI: 10.1067/j.cpradiol.2019.06.002.
[19]
Sugarbaker PH. Preoperative assessment of cancer patients with peritoneal metastases for complete cytoreduction[J]. Indian J Surg Oncol, 2016, 7(3): 295-302. DOI: 10.1007/s13193-016-0518-0.
[20]
Peng Y, Tang H, Meng XY, et al. Histological grades of rectal cancer: whole-volume histogram analysis of apparent diffusion coefficient based on reduced field-of-view diffusion-weighted imaging[J]. Quant Imaging Med Surg, 2020, 10(1): 243-256. DOI: 10.21037/qims.2019.11.17.
[21]
Low RN, Barone RM, Lucero J. Comparison of MRI and CT for predicting the Peritoneal Cancer Index (PCI) preoperatively in patients being considered for cytoreductive surgical procedures[J]. Ann Surg Oncol, 2015, 22(5): 1708-1715. DOI: 10.1245/s10434-014-4041-7.
[22]
van't Sant I, van Eden WJ, Engbersen MP, et al. Diffusion-weighted MRI assessment of the peritoneal cancer index before cytoreductive surgery[J]. Br J Surg, 2019, 106(4): 491-498. DOI: 10.1002/bjs.10989.
[23]
Bochtler T, Löffler H, Krämer A. Diagnosis and management of metastatic neoplasms with unknown primary[J]. Semin Diagn Pathol, 2018, 35(3): 199-206. DOI: 10.1053/j.semdp.2017.11.013.
[24]
Wang WN, Tan GHC, Chia CS, et al. Are positron emission tomography-computed tomography (PET-CT) scans useful in preoperative assessment of patients with peritoneal disease before cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC)?[J]. Int J Hyperthermia, 2018, 34(5): 524-531. DOI: 10.1080/02656736.2017.1366554.
[25]
Lee EYP, An H, Tse KY, et al. Molecular imaging of peritoneal carcinomatosis in ovarian carcinoma[J]. AJR Am J Roentgenol, 2020, 215(2): 305-312. DOI: 10.2214/AJR.19.22621.
[26]
Harlaar NJ, Koller M, de Jongh SJ, et al. Molecular fluorescence-guided surgery of peritoneal carcinomatosis of colorectal origin: a single-centre feasibility study[J]. Lancet Gastroenterol Hepatol, 2016, 1(4): 283-290. DOI: 10.1016/S2468-1253(16)30082-6.
[27]
Rijsemus CJV, Kok NFM, Aalbers AGJ, et al. Diagnostic performance of MRI for staging peritoneal metastases in patients with colorectal cancer after neoadjuvant chemotherapy[J/OL]. Eur J Radiol, 2022, 149 [2022-04-09]. https://linkinghub.elsevier.com/retrieve/pii/S0720048X22000754. DOI: 10.1016/j.ejrad.2022.110225.
[28]
Bhatt A, Mishra S, Parikh L, et al. Essentials for Pathological Evaluation of Peritoneal Surface Malignancies and Synoptic Reporting of Cytoreductive Surgery Specimens-a review and evidence-based Guide[J]. Indian J Surg Oncol, 2020, 11(1): 101-126. DOI: 10.1007/s13193-019-00897-7.
[29]
Bhatt A, Rousset P, Benzerdjeb N, et al. Clinical and radiologic predictors of a pathologic complete response to neoadjuvant chemotherapy (NACT) in patients undergoing cytoreductive surgery for colorectal peritoneal metastases: results of a prospective multi-center study[J]. Ann Surg Oncol, 2021, 28(7): 3840-3849. DOI: 10.1245/s10434-020-09330-8.
[30]
Feng Z, Liu S, Ju XZ, et al. Diagnostic accuracy of 18F-FDG PET/CT scan for peritoneal metastases in advanced ovarian cancer[J]. Quant Imaging Med Surg, 2021, 11(8): 3392-3398. DOI: 10.21037/qims-20-784.
[31]
Jónsdóttir B, Ripoll MA, Bergman A, et al. Validation of 18F-FDG PET/MRI and diffusion-weighted MRI for estimating the extent of peritoneal carcinomatosis in ovarian and endometrial cancer-a pilot study[J/OL]. Cancer Imaging, 2021, 21(1) [2022-04-09]. https://cancerimagingjournal.biomedcentral.com/articles/10.1186/s40644-021-00399-2. DOI: 10.1186/s40644-021-00399-2.
[32]
van't Sant I, Engbersen MP, Bhairosing PA, et al. Diagnostic performance of imaging for the detection of peritoneal metastases: a meta-analysis[J]. Eur Radiol, 2020, 30(6): 3101-3112. DOI: 10.1007/s00330-019-06524-x.
[33]
Chong GO, Jeong SY, Lee YH, et al. The ability of whole-body SUVmax in F-18 FDG PET/CT to predict suboptimal cytoreduction during primary debulking surgery for advanced ovarian cancer[J/OL]. J Ovarian Res, 2019, 12(1) [2022-04-09]. https://ovarianresearch.biomedcentral.com/articles/10.1186/s13048-019-0488-2 DOI: 10.1186/s13048-019-0488-2.
[34]
Michielsen K, Dresen R, Vanslembrouck R, et al. Diagnostic value of whole body diffusion-weighted MRI compared to computed tomography for pre-operative assessment of patients suspected for ovarian cancer[J]. Eur J Cancer, 2017, 83: 88-98. DOI: 10.1016/j.ejca.2017.06.010.
[35]
Dresen RC, De Vuysere S, De Keyzer F, et al. Whole-body diffusion-weighted MRI for operability assessment in patients with colorectal cancer and peritoneal metastases[J/OL]. Cancer Imaging, 2019, 19(1) [2022-04-09]. https://cancerimagingjournal.biomedcentral.com/articles/10.1186/s40644-018-0187-z. DOI: 10.1186/s40644-018-0187-z.
[36]
Elekonawo FMK, Starremans B, Laurens ST, et al. Can[18F]F-FDG PET/CT be used to assess the pre-operative extent of peritoneal carcinomatosis in patients with colorectal cancer?[J]. Abdom Radiol (NY), 2020, 45(2): 301-306. DOI: 10.1007/s00261-019-02268-w.
[37]
Zhao L, Pang YZ, Luo ZM, et al. Role of[68Ga]Ga-DOTA-FAPI-04 PET/CT in the evaluation of peritoneal carcinomatosis and comparison with[18F]-FDG PET/CT[J]. Eur J Nucl Med Mol Imaging, 2021, 48(6): 1944-1955. DOI: 10.1007/s00259-020-05146-6.
[38]
Chen HJ, Zhao L, Ruan D, et al. Usefulness of [68Ga] Ga-DOTA-FAPI-04 PET/CT in patients presenting with inconclusive [18F] FDG PET/CT findings[J]. Eur J Nucl Med Mol Imaging, 2021, 48(1): 73-86. DOI: 10.1007/s00259-020-04940-6.
[39]
Chen HJ, Pang YZ, Wu JX, et al. Comparison of [68Ga] Ga-DOTA-FAPI-04 and [18F] FDG PET/CT for the diagnosis of primary and metastatic lesions in patients with various types of cancer[J]. Eur J Nucl Med Mol Imaging, 2020, 47(8): 1820-1832. DOI: 10.1007/s00259-020-04769-z.
[40]
Kratochwil C, Flechsig P, Lindner T, et al. 68Ga-FAPI PET/CT: tracer uptake in 28 different kinds of cancer[J]. J Nucl Med, 2019, 60(6): 801-805. DOI: 10.2967/jnumed.119.227967.
[41]
Moradi F, Iagaru A, McConathy J. Clinical applications of PET/MR imaging[J]. Radiol Clin North Am, 2021, 59(5): 853-874. DOI: 10.1016/j.rcl.2021.05.013.
[42]
Bogdanovic B, Solari EL, Villagran Asiares A, et al. PET/MR technology: advancement and challenges[J]. Semin Nucl Med, 2022, 52(3): 340-355. DOI: 10.1053/j.semnuclmed.2021.11.014.
[43]
Low RN, Barone RM. Imaging for peritoneal metastases[J]. Surg Oncol Clin N Am, 2018, 27(3): 425-442. DOI: 10.1016/j.soc.2018.02.002.
[44]
Liu NQ, Zhang MG. Diagnostic value of apparent diffusion coefficient measurement in assessment of peritoneal metastases[J]. J Pract Radiol, 2021, 12(37): 1998-2001. DOI: 10.3969/ji.ssn.1002-1671.2021.12.018.
[45]
Moroz J, Reinsberg SA. Dynamic contrast-enhanced MRI[J]. Methods Mol Biol, 2018, 1718: 71-87. DOI: 10.1007/978-1-4939-7531-0_5.
[46]
Davey MS, Davey MG, Ryan ÉJ, et al. The use of radiomic analysis of magnetic resonance imaging in predicting distant metastases of rectal carcinoma following surgical resection: a systematic review and meta-analysis[J]. Colorectal Dis, 2021, 23(12): 3065-3072. DOI: 10.1111/codi.15919.

PREV Progress in MRI study of brain structure and functional alterations in patients with Crohn,s disease
NEXT Research status of mesenteric lymph node imaging and pathologic localization
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn