Share:
Share this content in WeChat
X
Special Focus
The value of quantitative parameters on magnetization transfer imaging of lacrimal glands in distinguishing the clinical activity of thyroid-associated ophthalmopathy
JIANG Wenhao  HU Hao  CHEN Huanhuan  ZHOU Jiang  CHEN Lu  CHEN Wen  WU Qian  XU Xiaoquan  WU Feiyun 

Cite this article as: Jiang WH, Hu H, Chen HH, et al. The value of quantitative parameters on magnetization transfer imaging of lacrimal glands in distinguishing the clinical activity of thyroid-associated ophthalmopathy[J]. Chin J Magn Reson Imaging, 2022, 13(11): 17-21. DOI:10.12015/issn.1674-8034.2022.11.004.


[Abstract] Objective To investigate the value of quantitative parameters on magnetization transfer imaging (MTI) of lacrimal gland in distinguishing the clinical activity of thyroid-associated ophthalmopathy (TAO).Materials and Methods From September 2020 to January 2022, we prospectively recruited 49 TAO patients in the First Affiliated Hospital of Nanjing Medical University, and divided them into active groups (≥3 points, 29 patients) and inactive group (<3 points, 20 patients) according to the Clinical Activity Score (CAS). All subjects underwent conventional MRI and coronal MTI scan of the orbit. Magnetization transmissibility ratio (MTR) of lacrimal glands and the signal intensity ratio (SIR) on fat suppression-T2WI between lacrimal glands and temporalis were measured, respectively. Mann-Whitney U test was applied to compare the differences of MRI quantitative parameters between two groups. The correlations between MRI parameters and CAS were evaluated using Spearman correlation analysis. Receiver operating characteristic curve analysis was used to assess the predictive value of each quantitative parameter in judging the clinical activity of TAO, and the area under the curves (AUC) were compared using the DeLong test.Results The MTRs of lacrimal glands in active group were significantly lower than those in inactive group (P<0.001), while the SIRs of lacrimal glands in active group were significantly higher than those in inactive group (P<0.001). MTR was mildly and negatively correlated with CAS (r=-0.427, P<0.001), while SIR was weakly and positively correlated with CAS (r=0.252, P=0.012). The combination of MTR and SIR showed the optimal diagnostic performance in distinguishing the clinical activity of TAO (AUC=0.809, sensitivity 62.5%, specificity 93.1%), which was better than SIR alone, and the difference was statistically significant (Z=2.35, P=0.019).Conclusions The quantitative parameters on MTI of lacrimal glands are feasible in distinguishing clinical activity of TAO, which can be used as a supplement to conventional MRI sequences to improve the performance in evaluating the clinical activity of TAO.
[Keywords] thyroid-associated ophthalmopathy;clinical staging;lacrimal glands;magnetic resonance imaging;magnetization transfer imaging

JIANG Wenhao1   HU Hao1   CHEN Huanhuan2   ZHOU Jiang1   CHEN Lu1   CHEN Wen1   WU Qian1   XU Xiaoquan1   WU Feiyun1*  

1 Department of Radiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China

2 Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China

Wu FY, E-mail: wfy_njmu@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 81801659).
Received  2022-07-07
Accepted  2022-11-10
DOI: 10.12015/issn.1674-8034.2022.11.004
Cite this article as: Jiang WH, Hu H, Chen HH, et al. The value of quantitative parameters on magnetization transfer imaging of lacrimal glands in distinguishing the clinical activity of thyroid-associated ophthalmopathy[J]. Chin J Magn Reson Imaging, 2022, 13(11): 17-21. DOI:10.12015/issn.1674-8034.2022.11.004.

[1]
Zhang XH, Zhang ZW, Lü FJ, et al. The study of high-resolution diffusion tensor imaging in thyroid-associated ophthalmopathy[J]. Chin J Magn Reson Imaging, 2021, 12(9): 11-14. DOI: 10.12015/issn.1674-8034.2021.09.003.
[2]
Smith TJ, Janssen JAMJL. Insulin-like Growth Factor-I Receptor and Thyroid-Associated Ophthalmopathy[J]. Endocr Rev, 2019, 40(1): 236-267. DOI: 10.1210/er.2018-00066.
[3]
Neag EJ, Smith TJ. 2021 update on thyroid-associated ophthalmopathy[J]. J Endocrinol Invest, 2022, 45(2): 235-259. DOI: 10.1007/s40618-021-01663-9.
[4]
Taylor PN, Zhang L, Lee RWJ, et al. New insights into the pathogenesis and nonsurgical management of Graves orbitopathy[J]. Nat Rev Endocrinol, 2020, 16(2): 104-116. DOI: 10.1038/s41574-019-0305-4.
[5]
Siakallis LC, Uddin JM, Miszkiel KA. Imaging Investigation of Thyroid Eye Disease[J]. Ophthalmic Plast Reconstr Surg, 2018, 34(4SSuppl 1): S41-S51. DOI: 10.1097/IOP.0000000000001139.
[6]
Mourits MP, Prummel MF, Wiersinga WM, et al. Clinical activity score as a guide in the management of patients with Graves' ophthalmopathy[J]. Clin Endocrinol (Oxf), 1997, 47(1): 9-14. DOI: 10.1046/j.1365-2265.1997.2331047.x.
[7]
Hu H, Xu XQ, Wu FY, et al. The clinical value of quantitative measurements of lacrimal gland in the diagnosis and staging of Graves ophthalmopathy based on 3 T-MR imaging[J]. Radiol Practice, 2015, 30(8): 831-834. DOI: 10.13609/j.cnki.1000-0313.2015.08.007.
[8]
Huang D, Luo Q, Yang H, et al. Changes of lacrimal gland and tear inflammatory cytokines in thyroid-associated ophthalmopathy[J]. Invest Ophthalmol Vis Sci, 2014, 55(8): 4935-4943. DOI: 10.1167/iovs.13-13704.
[9]
Gagliardo C, Radellini S, Morreale Bubella R, et al. Lacrimal gland herniation in Graves ophthalmopathy: a simple and useful MRI biomarker of disease activity[J]. Eur Radiol, 2020, 30(4): 2138-2141. DOI: 10.1007/s00330-019-06570-5.
[10]
Wu D, Zhu H, Hong S, et al. Utility of multi-parametric quantitative magnetic resonance imaging of the lacrimal gland for diagnosing and staging Graves' ophthalmopathy[J/OL]. Eur J Radiol, 2021, 141: 109815 [2022-07-07]. https://pubmed.ncbi.nlm.nih.gov/34130234/. DOI: 10.1016/j.ejrad.2021.109815.
[11]
Ben T, Wu Q, Chen W, et al. The value of lacrimal glands in diagnosis and staging of thyroid-associated ophthalmopathy with MR diffusion weighted imaging[J]. J Pract Radiol, 2020, 36(12): 1918-1921. DOI: 10.3969/j.issn.1002-1671.2020.12.008.
[12]
Hu H, Xu XQ, Wu FY, et al. Diagnosis and stage of Graves' ophthalmopathy: Efficacy of quantitative measurements of the lacrimal gland based on 3-T magnetic resonance imaging[J]. Exp Ther Med, 2016, 12(2): 725-729. DOI: 10.3892/etm.2016.3389.
[13]
Liu X, Su Y, Jiang M, et al. Application of Magnetic Resonance Imaging in the Evaluation of Disease Activity in Graves' Ophthalmopathy[J]. Endocr Pract, 2021, 27(3): 198-205. DOI: 10.1016/j.eprac.2020.09.008.
[14]
Zhou MX, Shen LY, Jiao Q, et al. ROLE OF MAGNETIC RESONANCE IMAGING IN THE ASSESSMENT OF ACTIVE THYROID-ASSOCIATED OPHTHALMOPATHY PATIENTS WITH LONG DISEASE DURATION[J]. Endocr Pract, 2019, 25(12): 1268-1278. DOI: 10.4158/EP-2019-0133.
[15]
Kollmer J, Kästel T, Jende JME, et al. Magnetization Transfer Ratio in Peripheral Nerve Tissue: Does It Depend on Age or Location?[J]. Invest Radiol, 2018, 53(7): 397-402. DOI: 10.1097/RLI.0000000000000455.
[16]
Lu B, Lin J, Du J, et al. Native T1 Mapping and Magnetization Transfer Imaging in Grading Bowel Fibrosis in Crohn's Disease: A Comparative Animal Study[J/OL]. Biosensors (Basel), 2021, 11(9): 302 [2022-07-07]. https://pubmed.ncbi.nlm.nih.gov/34562892/. DOI: 10.3390/bios11090302.
[17]
Afarideh M, Jiang K, Ferguson CM, et al. Magnetization Transfer Imaging Predicts Porcine Kidney Recovery After Revascularization of Renal Artery Stenosis[J]. Invest Radiol, 2021, 56(2): 86-93. DOI: 10.1097/RLI.0000000000000711.
[18]
Ali Z, Stromp TA, Vandsburger MH. Fractal Analysis of Cardiac Fibrosis Patterns Derived From Magnetization Transfer Contrast MRI in Patients With End-Stage Renal Disease[J]. AJR Am J Roentgenol, 2020, 214(3): 506-513. DOI: 10.2214/AJR.19.21745.
[19]
Li XH, Huang SY, Fang ZN, et al. The diagnostic value of magnetization transfer MRI for bowel inflammation and fibrosis in Crohn disease[J]. Chin J Radiol, 2018, 52(6): 447-451. DOI: 10.3760/cma.j.issn.1005-1201.2018.06.008.
[20]
Hu H, Chen L, Zhou J, et al. Multiparametric magnetic resonance imaging for differentiating active from inactive thyroid-associated ophthalmopathy: Added value from magnetization transfer imaging[J/OL]. Eur J Radiol, 2022, 151: 110295 [2022-07-07]. https://pubmed.ncbi.nlm.nih.gov/35405579/. DOI: 10.1016/j.ejrad.2022.110295.
[21]
Li XH, Mao R, Huang SY, et al. Characterization of Degree of Intestinal Fibrosis in Patients with Crohn Disease by Using Magnetization Transfer MR Imaging[J]. Radiology, 2018, 287(2): 494-503. DOI: 10.1148/radiol.2017171221.
[22]
DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach[J]. Biometrics, 1988, 44(3): 837-845.
[23]
Hei Y, Kang L, Li YY, et al. The pathological changes of the orbital tissue in thyroid associated ophthalmopathy[J]. Chin J Ophthalmol, 2008, 44(5): 423-426. DOI: 10.3321/j.issn:0412-4081.2008.05.009.
[24]
Schawkat K, Eshmuminov D, Lenggenhager D, et al. Preoperative Evaluation of Pancreatic Fibrosis and Lipomatosis: Correlation of Magnetic Resonance Findings With Histology Using Magnetization Transfer Imaging and Multigradient Echo Magnetic Resonance Imaging[J]. Invest Radiol, 2018, 53(12): 720-727. DOI: 10.1097/RLI.0000000000000496.
[25]
Jiang K, Ferguson CM, Ebrahimi B, et al. Noninvasive Assessment of Renal Fibrosis with Magnetization Transfer MR Imaging: Validation and Evaluation in Murine Renal Artery Stenosis[J]. Radiology, 2017, 283(1): 77-86. DOI: 10.1148/radiol.2016160566.
[26]
Hiromatsu Y, Eguchi H, Tani J, et al. Graves' ophthalmopathy: epidemiology and natural history[J]. Intern Med, 2014, 53(5): 353-360. DOI: 10.2169/internalmedicine.53.1518.
[27]
Tortora F, Prudente M, Cirillo M, et al. Diagnostic accuracy of short-time inversion recovery sequence in Graves' Ophthalmopathy before and after prednisone treatment[J]. Neuroradiology, 2014, 56(5): 353-361. DOI: 10.1007/s00234-014-1332-4.
[28]
Romero IO, Sinha U. Magnetization transfer saturation imaging of human calf muscle: Reproducibility and sensitivity to regional and sex differences[J]. J Magn Reson Imaging, 2019, 50(4): 1227-1237. DOI: 10.1002/jmri.26694.
[29]
West DJ, Cruz G, Teixeira RPAG, et al. An MR fingerprinting approach for quantitative inhomogeneous magnetization transfer imaging[J]. Magn Reson Med, 2022, 87(1): 220-235. DOI: 10.1002/mrm.28984.

PREV Probe of the central mechanism of adult patients with amblyopia based on rs-fMRI technique
NEXT Prediction of distant metastasis in nasopharyngeal carcinoma by interpretable machine learning model based on multiparametric MRI radiomics and clinical factors
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn