Share:
Share this content in WeChat
X
Original Article
Immediate brain effect of pushing Qiaogong point intervention on stage Ⅰ essential hypertension based on rs-fMRI
CHEN Dongnan  YE Senlin  SHI Yue  DUAN Zhengting  FENG Yue 

Cite this article as: Chen DN, Ye SL, Shi Y, et al. Immediate brain effect of pushing Qiaogong point intervention on stage I essential hypertension based on rs-fMRI[J]. Chin J Magn Reson Imaging, 2022, 13(11): 93-98. DOI:10.12015/issn.1674-8034.2022.11.017.


[Abstract] Objective To observe the immediate brain effect of pushing Qiaogong point intervention in patients with grade I essential hypertension (EH) by resting-state functional magnetic resonance imaging (rs-fMRI).Materials and Methods Fifteen EH patients and 15 healthy controls (HC) with no statistical difference in sex, age, height, weight and other baseline conditions were prospectively enrolled. Demographic data of the two groups were filled in before enrollment. Baseline rs-fMRI data, systolic and diastolic blood pressures were collected for both groups at the start of the experiment, followed by a 10 minute Qiaogong point intervention for the EH group, followed by a second MRI scan and final measurement of systolic and diastolic blood pressures. Amplitude of low frequency fluctuation (ALFF) was used to compare the ALFF values of EH group and HC group, and the changes of ALFF values before and after intervention. Pearson correlation analysis was used to analyze the correlation between the difference of ALFF value in brain region and blood pressure between two groups.Results Compared with HC group, ALFF value of left middle frontal gyrus (MFG.L) was significantly lower in EH group (Gaussian random field correction, voxel P<0.005, cluster P<0.05). ALFF value of left middle frontal gyrus was negatively correlated with systolic blood pressure (r=-0.627, P=0.012). There was no significant correlation with diastolic blood pressure (P>0.05). After intervention, the systolic blood pressure and diastolic blood pressure of hypertension group were significantly lower than those before treatment (t=3.61, P=0.003); (t=3.80, P=0.002). ALFF values were significantly increased in bilateral middle frontal gyrus (Gaussian random field correction, voxel P<0.005, cluster P<0.05).Conclusions Decreased brain activity in left middle frontal gyrus in hypertensive patients Qiaogong point that the onset of EH is accompanied by brain function damage. Pushing bridge arch can immediately regulate the ALFF value of MFG in EH patients, which may communicate with massage stimulation signal, activate the brain regulatory function, and thus improve blood pressure.
[Keywords] grade I essential hypertension;push Qiaogong point;resting-state functional magnetic resonance imaging;amplitude of low frequency fluctuation;middle frontal gyrus;immediate effect;magnetic resonance imaging

CHEN Dongnan   YE Senlin   SHI Yue   DUAN Zhengting   FENG Yue*  

College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China

Feng Y, E-mail: fengyue714@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China Youth Science Fund (No. 81102662); Project of Sichuan Provincial Science and Technology Department (No. 2019YJ0490).
Received  2022-06-29
Accepted  2022-11-06
DOI: 10.12015/issn.1674-8034.2022.11.017
Cite this article as: Chen DN, Ye SL, Shi Y, et al. Immediate brain effect of pushing Qiaogong point intervention on stage I essential hypertension based on rs-fMRI[J]. Chin J Magn Reson Imaging, 2022, 13(11): 93-98. DOI:10.12015/issn.1674-8034.2022.11.017.

[1]
Brant LCC, Passaglia LG, Pinto-Filho MM, et al. The burden of resistant hypertension across the world[J]. Curr Hypertens Rep, 2022, 24(3): 55-66. DOI: 10.1007/s11906-022-01173-w.
[2]
GBD Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J/OL]. Lancet, 2018, 392(10159): 1923-1994 [2022-06-28]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5614451/. DOI: 10.1016/S0140-6736(18)32225-6.
[3]
NCD Risk Factor Collaboration (NCD-RisC). Long-term and recent trends in hypertension awareness, treatment, and control in 12 high-income countries: an analysis of 123 nationally representative surveys[J/OL]. Lancet, 2019, 394(10199): 639-651 [2022-06-28]. https://www.sciencedirect.com/science/article/pii/S0140673619311456. DOI: 10.1016/S0140-6736(19)31145-6.
[4]
Laurent S. Antihypertensive drugs[J]. Pharmacol Res, 2017, 124: 116-125. DOI: 10.1016/j.phrs.2017.07.026.
[5]
Stuermer EK, Besser M, Terberger N, et al. Side effects of frequently used antihypertensive drugs on wound healing in vitro[J]. Skin Pharmacol Physiol, 2019, 32(3): 162-172. DOI: 10.1159/000499433.
[6]
Zhao Q, Li HS, Ji MQ, et al. Systematic review and meta-analysis of efficacy and safety of massage in treatment of essential hypertension[J]. J Tradit Chin Med, 2018, 59(18): 1568-1573. DOI: 10.13288/j.11-2166/r.2018.18.009.
[7]
Zhu BY, Li X, Peng J. Therapeutic observation on tuina for primary hypertension due to liver-fire flaming-up[J]. J Acupunct Tuina Sci, 2019, 17(2): 105-110. DOI: 10.1007/s11726-019-1099-6.
[8]
Shen ZF, Bian XD, Gao F, et al. Effect of tuina manipulations on blood pressure and its variability in hypertension patients[J]. J Acupunct Tuina Sci, 2015, 13(3): 180-184. DOI: 10.1007/s11726-015-0846-6.
[9]
Yousaf T, Dervenoulas G, Politis M. Advances in MRI methodology[J]. Int Rev Neurobiol, 2018, 141: 31-76. DOI: 10.1016/bs.irn.2018.08.008.
[10]
Wang ZW, Chen Z, Zhang LF, et al. Status of hypertension in China: results from the China hypertension survey, 2012-2015[J]. Circulation, 2018, 137(22): 2344-2356. DOI: 10.1161/CIRCULATIONAHA.117.032380.
[11]
Zou QH, Zhu CZ, Yang YH, et al. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF[J]. J Neurosci Methods, 2008, 172(1): 137-141. DOI: 10.1016/j.jneumeth.2008.04.012.
[12]
Wang YJ, Zheng Y, Qu SS, et al. Cerebral targeting of acupuncture at combined acupoints in treating essential hypertension: an rs-fMRI study and curative effect evidence[J/OL]. Evid Based Complement Alternat Med, 2016: 5392954 [2022-06-28]. https://www.hindawi.com/journals/ecam/2016/5392954/. DOI: 10.1155/2016/5392954.
[13]
Xie R, Zhang GM, Feng Y. Clinical efficacy of acupuncture combined with push bridge arch in the treatment of mild essential hypertension[J]. J Shaanxi Univ Chin Med, 2021, 44(2): 101-105. DOI: 10.13424/j.cnki.jsctcm.2021.02.021.
[14]
Hayasaka S, Peiffer AM, Hugenschmidt CE, et al. Power and sample size calculation for neuroimaging studies by non-central random field theory[J]. Neuroimage, 2007, 37(3): 721-730. DOI: 10.1016/j.neuroimage.2007.06.009.
[15]
Zang YF, He Y, Zhu CZ, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI[J]. Brain Dev, 2007, 29(2): 83-91. DOI: 10.1016/j.braindev.2006.07.002.
[16]
Yan CG, Cheung B, Kelly C, et al. A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics[J]. Neuroimage, 2013, 76: 183-201. DOI: 10.1016/j.neuroimage.2013.03.004.
[17]
Canavan M, O'Donnell MJ. Hypertension and cognitive impairment: a review of mechanisms and key concepts[J/OL]. Front Neurol, 2022, 13: 821135 [2022-06-22]. https://doi.org/10.3389/fneur.2022.821135. DOI: 10.3389/fneur.2022.821135.
[18]
de Havenon A, Sharma R, Falcone GJ, et al. Effect of intensive blood pressure control on incident stroke risk in patients with mild cognitive impairment[J/OL]. Stroke, 2022, 53(7): e242-e245 [2022-06-28]. https://doi.org/10.1161/STROKEAHA.122.038818. DOI: 10.1161/strokeaha.122.038818.
[19]
Sierra C. Hypertension and the risk of dementia[J/OL]. Front Cardiovasc Med, 2020, 7: 5. [2022-06-28]. https://doi.org/10.3389/fcvm.2020.00005. DOI: 10.3389/fcvm.2020.00005.
[20]
Men X, Sun W, Fan F, et al. China stroke primary prevention trial: visit-to-visit systolic blood pressure variability is an independent predictor of primary stroke in hypertensive patients[J/OL]. J Am Heart Assoc, 2017, 6(3): e004350 [2022-06-28]. https://doi.org/10.1161/JAHA.116.004350. DOI: 10.1161/jaha.116.004350.
[21]
Muela HC, Costa-Hong VA, Yassuda MS, et al. Hypertension severity is associated with impaired cognitive performance[J/OL]. J Am Heart Assoc, 2017, 6(1): e004579 [2022-06-28]. https://doi.org/10.1161/JAHA.116.004579. DOI: 10.1161/jaha.116.004579.
[22]
Haight T, Nick Bryan R, Erus G, et al. White matter microstructure, white matter lesions, and hypertension: an examination of early surrogate markers of vascular-related brain change in midlife[J]. Neuroimage Clin, 2018, 18: 753-761. DOI: 10.1016/j.nicl.2018.02.032.
[23]
Yang JH, Yang ZX, Chen CJ, et al. Evaluation of microstructural changes of brain parenchyma in patients with essential hypertension by diffuse kurtosis imaging and enhanced T2 star weighted angiography[J]. Chin J Neuromedicine, 2021, 20(9): 907-914. DOI: 10.3760/cma.j.cn115354-20210726-00462.
[24]
Bu L, Huo C, Xu G, et al. Alteration in brain functional and effective connectivity in subjects with hypertension[J/OL]. Front Physiol, 2018, 9: 669 [2022-06-24]. https://doi.org/10.3389/fphys.2018.00669. DOI: 10.3389/fphys.2018.00669.
[25]
Zhang DS, Gao J, Yan XJ, et al. Evaluating the combined damage of type 2 diabetes and hypertension on spontaneous brain activity by resting state func-tional MRI[J]. Chin J Med Imaging, 2021, 31(10): 1629-1633.
[26]
Hu JY, Shu HY, Li QY, et al. Alternation of brain intrinsic activity in patients with hypertensive retinopathy: a resting-state fMRI study[J/OL]. Aging (Albany NY), 2021, 13(17): 21659-21670[2022-06-28]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8457564/. DOI: 10.18632/aging.203510.
[27]
Hughes D, Judge C, Murphy R, et al. Association of blood pressure lowering with incident dementia or cognitive impairment: a systematic review and meta-analysis[J]. JAMA, 2020, 323(19): 1934-1944. DOI: 10.1001/jama.2020.4249.
[28]
Kozera GM, Dubaniewicz M, Zdrojewski T, et al. Cerebral vasomotor reactivity and extent of white matter lesions in middle-aged men with arterial hypertension: a pilot study[J]. Am J Hypertens, 2010, 23(11): 1198-1203. DOI: 10.1038/ajh.2010.152.
[29]
Esme M, Yavuz BB, Yavuz B, et al. Masked hypertension is associated with cognitive decline in geriatric age-geriatric MASked hypertension and cognition (G-MASH-cog) study[J]. J Gerontol A Biol Sci Med Sci, 2018, 73(2): 248-254. DOI: 10.1093/gerona/glx150.
[30]
Song PH, Lin H, Liu CY, et al. Transcranial magnetic stimulation to the middle frontal gyrus during attention modes induced dynamic module reconfiguration in brain networks[J/OL]. Front Neuroinform, 2019, 13: 22. [2022-06-20]. https://doi.org/10.3389/fninf.2019.00022. DOI: 10.3389/fninf.2019.00022.
[31]
Sierpowska J, Fernandez-Coello A, Gomez-Andres A, et al. Involvement of the middle frontal gyrus in language switching as revealed by electrical stimulation mapping and functional magnetic resonance imaging in bilingual brain tumor patients[J]. Cortex, 2018, 99: 78-92. DOI: 10.1016/j.cortex.2017.10.017.
[32]
Luo B, Dong WW, Chang L, et al. Altered interhemispheric functional connectivity associated with early verbal fluency decline after deep brain stimulation in Parkinson's disease[J/OL]. Front Aging Neurosci, 2022, 14: 799545 [2022-06-28]. https://doi.org/10.3389/fnagi.2022.799545. DOI: 10.3389/fnagi.2022.799545.
[33]
Xing XX, Zheng MX, Hua XY, et al. Brain plasticity after peripheral nerve injury treatment with massage therapy based on resting-state functional magnetic resonance imaging[J]. Neural Regen Res, 2021, 16(2): 388-393. DOI: 10.4103/1673-5374.290912.
[34]
Wen Y, Chen XM, Jin X, et al. A spinal manipulative therapy altered brain activity in patients with lumbar disc herniation: a resting-state functional magnetic resonance imaging study[J/OL]. Front Neurosci, 2022, 16: 974792 [2022-06-28]. https://doi.org/10.3389/fnins.2022.974792. DOI: 10.3389/fnins.2022.974792.
[35]
Guo RS, Huang F, Huang CY, et al. Effect of Lingnan LIN's bone-setting manipulations on the amplitude of low frequency fluctuation in whole-brain resting-state fMRI in patients with greater occipital neuralgia[J]. J Guangzhou Univ Tradit Chin Med, 2021, 38(1): 109-115. DOI: 10.13359/j.cnki.gzxbtcm.2021.01.021.
[36]
Tan WL, Wang W, Jiang HN, et al. Brain immediate analgesia mechanism of Tuina in low back pain[J]. Chin J Tradit Med Traumatol & Orthop, 2019, 27(1): 11-16.
[37]
Sheets JR, Briggs RG, Bai MY, et al. Parcellation-based modeling of the dorsal premotor area[J/OL]. J Neurol Sci, 2020 [2022-06-23]. https://doi.org/10.1016/j.jns.2020.116907. DOI: 10.1016/j.jns.2020.116907.
[38]
Li RR, Dai ZZ, Ye RD, et al. Magnetic stimulation of carotid sinus as a treatment for hypertension[J]. J Clin Hypertens (Greenwich), 2019, 21(2): 299-306. DOI: 10.1111/jch.13470.
[39]
Li X, Wang WX, Wang AL, et al. Vulnerability of the frontal and parietal regions in hypertensive patients during working memory task[J]. J Hypertens, 2017, 35(5): 1044-1051. DOI: 10.1097/HJH.0000000000001250.
[40]
Stoyanov D, Aryutova K, Kandilarova S, et al. Diagnostic task specific activations in functional MRI and aberrant connectivity of Insula with middle frontal gyrus can inform the differential diagnosis of psychosis[J/OL]. Diagnostics (Basel), 2021, 11(1): 95 [2022-06-24]. https://doi.org/10.3390/diagnostics11010095. DOI: 10.3390/diagnostics11010095.
[41]
Guevarra AC, Ng SC, Saffari SE, et al. Age moderates associations of hypertension, white matter hyperintensities, and cognition[J]. J Alzheimers Dis, 2020, 75(4): 1351-1360. DOI: 10.3233/JAD-191260.
[42]
Tabassi Mofrad F, Jahn A, Schiller NO. Dual function of primary somatosensory cortex in cognitive control of language: evidence from resting state fMRI[J]. Neuroscience, 2020, 446: 59-68. DOI: 10.1016/j.neuroscience.2020.08.032.
[43]
Briggs RG, Lin YH, Dadario NB, et al. Anatomy and white matter connections of the middle frontal gyrus[J/OL]. World Neurosurg, 2021, 150: e520-e529. [2022-06-24]. https://doi.org/10.1016/j.wneu.2021.03.045. DOI: 10.1016/j.wneu.2021.03.045.
[44]
Yang YC, Tan WL, Wang W, et al. Study on the changes of default mode brain network function before and after Tuina treatment of chronic low back pain[J]. Chin Comput Med Imaging, 2020, 26(2): 101-108. DOI: 10.19627/j.cnki.cn31-1700/th.2020.02.001.
[45]
Zhang H, Chen H, Wang H, et al. Effect of Chinese tuina massage therapy on resting state brain functional network of patients with chronic neck pain[J]. J Tradit Chin Med Sci, 2015, 2(1): 60-68. DOI: 10.1016/j.jtcms.2015.10.001.
[46]
Xiao XJ. Immediate clinical efficacy and central response characteristics of positive and negative pushing bridge arch in the treatment of essential hypertension[D]. Chengdu: Chengdu University of TCM, 2015.

PREV Evaluation of magnetic resonance DWI-ADC value in assessing the early efficacy of neoadjuvant chemotherapy for conventional osteosarcoma
NEXT Visual analysis of vascular cognitive impairment based on VOSviewer and CiteSpace by fMRI
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn