Share:
Share this content in WeChat
X
Review
Research progress of diffusion magnetic resonance imaging in autoimmune encephalitis
LI Qingrui  WU Kunhua  GONG Xiarong  BI Qiu  WANG Jiaqi  LI Xiu  XIE Guoqing 

Cite this article as: Li QR, Wu KH, Gong XR, et al. Research progress of diffusion magnetic resonance imaging in autoimmune encephalitis[J]. Chin J Magn Reson Imaging, 2022, 13(11): 133-136. DOI:10.12015/issn.1674-8034.2022.11.026.


[Abstract] Autoimmune encephalitis (AE) is a kind of encephalitis caused by autoimmune mechanism mediated, early diagnosis and treatment is beneficial to the prognosis of patients with AE. MRI in the detection of patients with AE, prognostic evaluation, curative effect evaluation plays an important role. The detection ability of conventional MRI in AE is limited. Diffusion magnetic resonance imaging (dMRI) is a non-invasive imaging technique capable of characterizing the diffusion properties of water molecules in vivo and detecting microstructural changes in brain tissue. It provides new tools to investigate pathophysiological mechanism of AE. It is helpful for early diagnosis, evaluation of prognosis and curative effect. Therefore, this paper reviews the research status and progress of conventional MRI and dMRI technology in AE, and looks forward to the future research direction.
[Keywords] autoimmune encephalitis;limbic encephalitis;diffusion magnetic resonance imaging;functional magnetic resonance imagine;magnetic resonance imaging

LI Qingrui1   WU Kunhua2*   GONG Xiarong2   BI Qiu2   WANG Jiaqi2   LI Xiu2   XIE Guoqing1  

1 College of Medicine, Kunming University of Science and Technology, Kunming 650000, China

2 Department of MRI, the First People's Hospital of Yunnan Province (the Affiliated Hospital of Kunming University of Science and Technology), Kunming 650032, China

Wu KH, E-mail: wukunhua@hotmail.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Yunnan Health Training Project of High Level Talents (No. H-2019070).
Received  2022-06-06
Accepted  2022-10-08
DOI: 10.12015/issn.1674-8034.2022.11.026
Cite this article as: Li QR, Wu KH, Gong XR, et al. Research progress of diffusion magnetic resonance imaging in autoimmune encephalitis[J]. Chin J Magn Reson Imaging, 2022, 13(11): 133-136. DOI:10.12015/issn.1674-8034.2022.11.026.

[1]
Abboud H, Probasco JC, Irani S, et al. Autoimmune encephalitis: proposed best practice recommendations for diagnosis and acute management[J]. J Neurol Neurosurg Psychiatry, 2021, 92(7): 757-768. DOI: 10.1136/jnnp-2020-325300.
[2]
Chinese Society of Neuroinfectious Diseases and Cerebrospinal Fluid Cytology. Chinese expert consensus on the diagnosis and management of autoimmune encephalitis (2022 edition)[J]. Chin J Neurol, 2022, 55(9): 931-949. DOI: 10.3760/cma.j.cn113694-20220219-00118.
[3]
Neurology Branch of Chinese Medical Association. Chinese expert consensus on the diagnosis and management of autoimmune encephalitis[J]. Chin J Neurol, 2017, 50(2): 91-98. DOI: 10.3760/cma.j.issn.1006-7876.2017.02.004.
[4]
Elkhider H, Sharma R, Kapoor N, et al. Autoimmune encephalitis and seizures, cerebrospinal fluid, imaging, and EEG findings: a case series[J]. Neurol Sci, 2022, 43(4): 2669-2680. DOI: 10.1007/s10072-021-05617-0.
[5]
Grinberg F, Maximov II, Farrher E, et al. Microstructure-informed slow diffusion tractography in humans enhances visualisation of fibre pathways[J]. Magn Reson Imaging, 2018, 45: 7-17. DOI: 10.1016/j.mri.2017.08.007.
[6]
Seery N, Butzkueven H, Brien TJ O, et al. Contemporary advances in anti-NMDAR antibody (Ab)-mediated encephalitis[J/OL]. Autoimmun Rev, 2022, 21(4) [2022-06-05]. https://linkinghub.elsevier.com/retrieve/pii/S1568-9972(22)00027-1. DOI: 10.1016/j.autrev.2022.103057.
[7]
Koksel Y, McKinney AM. Potentially Reversible and Recognizable Acute Encephalopathic Syndromes: Disease Categorization and MRI Appearances[J]. AJNR Am J Neuroradiol, 2020, 41(8): 1328-1338. DOI: 10.3174/ajnr.A6634.
[8]
Shao X, Fan S, Luo H, et al. Brain Magnetic Resonance Imaging Characteristics of Anti-Leucine-Rich Glioma-Inactivated 1 Encephalitis and Their Clinical Relevance: A Single-Center Study in China[J/OL]. Front Neurol, 2021, 11 [2022-06-05]. https://www.frontiersin.org/articles/10.3389/fneur.2020.618109/full. DOI: 10.3389/fneur.2020.618109.
[9]
Huang X, Fan C, Gao L, et al. Clinical Features, Immunotherapy, and Outcomes of Anti-Leucine-Rich Glioma-Inactivated-1 Encephalitis[J]. J Neuropsych Clin N, 2022, 34(2): 141-148. DOI: 10.1176/appi.neuropsych.20120303.
[10]
Venkatesan A, Jagdish B. Imaging in Encephalitis[J]. Semin Neurol, 2019, 39(3): 312-321. DOI: 10.1055/s-0039-1687838.
[11]
Zhang Z, Fan S, Ren H, et al. Clinical characteristics and prognosis of anti-alpha-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic acid receptor encephalitis[J/OL]. BMC Neurol, 2021, 21(1) [2022-06-05]. https://europepmc.org/article/MED/34915865. DOI: 10.1186/s12883-021-02520-1.
[12]
Deng B, Cai M, Qiu Y, et al. MRI Characteristics of Autoimmune Encephalitis With Autoantibodies to GABAA Receptor[J/OL]. Neurology-Neuroimmunology Neuroinflammation, 2022, 9(3) [2022-3-25]. https://nn.neurology.org/content/9/3/e1158.long. DOI: 10.1212/NXI.0000000000001158.
[13]
Ronchi NR, Silva GD. Comparison of the clinical syndromes of anti-GABAa versus anti-GABAb associated autoimmune encephalitis: A systematic review[J/OL]. J Neuroimmunol, 2022, 363 [2022-06-05]. https://linkinghub.elsevier.com/retrieve/pii/S0165-5728(21)00331-3. DOI: 10.1016/j.jneuroim.2021.577804.
[14]
Madhavan AA, Carr CM, Morris PP, et al. Imaging Review of Paraneoplastic Neurologic Syndromes[J]. Am J Neuroradiol, 2020, 41(12): 2176-2187. DOI: 10.3174/ajnr.A6815.
[15]
Sun YZ, He YL, Zhang J, et al. Comparison and Differentiation of Clinical Symptoms and MRI Findings between Autoimmune Encephalitis and Viral Encephalitis[J]. Chin J CT & MRI, 2021, 19(9): 4-6, 30. DOI: 10.3969/j.issn.1672-5131.2021.09.002.
[16]
Zoccarato M, Valeggia S, Zuliani L, et al. Conventional brain MRI features distinguishing limbic encephalitis from mesial temporal glioma[J]. Neuroradiology, 2019, 61(8): 853-860. DOI: 10.1007/s00234-019-02212-1.
[17]
Macchi ZA, Kleinschmidt-DeMasters BK, Orjuela KD, et al. Glioblastoma as an autoimmune limbic encephalitis mimic: A case and review of the literature[J/OL]. J Neuroimmunol, 2020, 342 [2022-06-05]. https://linkinghub.elsevier.com/retrieve/pii/S0165-5728(20)30036-9. DOI: 10.1016/j.jneuroim.2020.577214.
[18]
Wang R, Lai X, Liu X, et al. Brain magnetic resonance-imaging findings of anti-N-methyl-d-aspartate receptor encephalitis: a cohort follow-up study in Chinese patients[J]. J Neurol, 2018, 265(2): 362-369. DOI: 10.1007/s00415-017-8707-5.
[19]
Raja P, Shamick B, Nitish LK, et al. Clinical characteristics, treatment and long-term prognosis in patients with anti-NMDAR encephalitis[J]. Neurol Sci, 2021, 42(11): 4683-4696. DOI: 10.1007/s10072-021-05174-6.
[20]
Zhang T, Duan Y, Ye J, et al. Brain MRI Characteristics of Patients with Anti-N-Methyl-D-Aspartate Receptor Encephalitis and Their Associations with 2-Year Clinical Outcome[J]. Am J Neuroradiol, 2018, 39(5): 824-829. DOI: 10.3174/ajnr.A5593.
[21]
Neo S, Yeo T, Chen Z, et al. Acute radiological features facilitate diagnosis and prognosis of anti-N-methyl-d-aspartate receptor (NMDAR) and anti-voltage-gated potassium channel (VGKC) encephalitis in adults[J/OL]. J Neurol Sci, 2020, 419 [2022-06-05]. https://linkinghub.elsevier.com/retrieve/pii/S0022-510X(20)30552-9. DOI: 10.1016/j.jns.2020.117216.
[22]
Xiang Y, Zeng C, Liu B, et al. Deep Learning-Enabled Identification of Autoimmune Encephalitis on 3D Multi-Sequence MRI[J]. J Magn Reson Imaging, 2022, 55(4): 1082-1092. DOI: 10.1002/jmri.27909.
[23]
Xiang Y, Dong X, Zeng C, et al. Clinical Variables, Deep Learning and Radiomics Features Help Predict the Prognosis of Adult Anti-N-methyl-D-aspartate Receptor Encephalitis Early: A Two-Center Study in Southwest China[J/OL]. Frontiers Immunol, 2022, 13 [2022-06-05]. https://www.frontiersin.org/articles/10.3389/fimmu.2022.913703/full. DOI: 10.3389/fimmu.2022.913703.
[24]
Dade M, Giry M, Berzero G, et al. Quantitative brain imaging analysis of neurological syndromes associated with anti-GAD antibodies[J]. NeuroImage: Clinical, 2021, 32 [2022-06-05]. https://linkinghub.elsevier.com/retrieve/pii/S2213-1582(21)00270-9. DOI: 10.1016/j.nicl.2021.102826.
[25]
Katirag A, Beker-Acay M, Unlu E, et al. Apparent Diffusion Coefficient analysis of encephalitis: A comparative study with topographic evaluation and conventional MRI findings[J]. Pak J Med Sci, 2016, 32(3): 725-730. DOI: 10.12669/pjms.323.10030.
[26]
Son DK, Cho SM, Ryu HU, et al. Anti-NMDAR encephalitis with bilateral basal ganglia MRI lesions at a distance of time: a case report[J/OL]. BMC Neurol, 2022, 22(1) [2022-3-22]. https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-022-02652-y. DOI: 10.1186/s12883-022-02652-y.
[27]
Wang R, Chen B, Qi D. Anti-N-methyl-D-aspartate receptor encephalitis concomitant with multifocal subcortical white matter lesions on magnetic resonance imaging: a case report and review of the literature[J]. BMC Neurol, 2015, 15(1) [2015-6-28]. https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-015-0366-5. DOI: 10.1186/s12883-015-0366-5.
[28]
Chen B, Lopez Chiriboga AS, Sirven JI, et al. Autoimmune Encephalitis-Related Seizures and Epilepsy: Diagnostic and Therapeutic Approaches[J]. Mayo Clin Proc, 2021, 96(8): 2029-2039. DOI: 10.1016/j.mayocp.2021.02.019.
[29]
Budhram A, Britton JW, Liebo GB, et al. Use of diffusion-weighted imaging to distinguish seizure-related change from limbic encephalitis[J]. J Neurol, 2020, 267(11): 3337-3342. DOI: 10.1007/s00415-020-10007-1.
[30]
Kotsenas AL, Watson RE, Pittock SJ, et al. MRI Findings in Autoimmune Voltage-Gated Potassium Channel Complex Encephalitis with Seizures: One Potential Etiology for Mesial Temporal Sclerosis[J]. Am J Neuroradiol, 2014, 35(1):84-89. DOI: 10.3174/ajnr.A3633.
[31]
Deng BD, Li Z, Hu DY, et al. Clinical value of reduced field-of-view diffusion-weighted imaging in cervical cancer[J]. Chin J Magn Reson Imaging, 2020, 11(7): 487-492. DOI: 10.12015/issn.1674-8034.2020.07.002.
[32]
Monaco S, Mariotto S, Bolzan A, et al. Superior diagnostic performance of reduced-FOV DWI versus conventional DWI MRI in anti-NMDAR encephalitis[J]. Neurol Sci, 2021, 42(4): 1567-1569. DOI: 10.1007/s10072-020-04799-3.
[33]
Tae WS, Ham BJ, Pyun SB, et al. Current Clinical Applications of Diffusion-Tensor Imaging in Neurological Disorders[J]. J Clin Neurol, 2018, 14(2): 129-140. DOI: 10.3988/jcn.2018.14.2.129.
[34]
Takeuchi H, Kawashima R. Mean Diffusivity in the Dopaminergic System and Neural Differences Related to Dopaminergic System[J]. Curr Neuropharmacol, 2018, 16(4): 460-474. DOI: 10.2174/1570159X15666171109124839.
[35]
Finke C, Kopp UA, Scheel M, et al. Functional and structural brain changes in anti-N-methyl-D-aspartate receptor encephalitis[J]. Ann Neurol, 2013, 74(2): 284-296. DOI: 10.1002/ana.23932.
[36]
Phillips OR, Joshi SH, Narr KL, et al. Superficial white matter damage in anti-NMDA receptor encephalitis[J]. J Neurol Neurosurg Psychiatry, 2018, 89(5): 518-525. DOI: 10.1136/jnnp-2017-316822.
[37]
Mueller C, Langenbruch LM, Rau JMH, et al. Determinants of cognition in autoimmune limbic encephalitis—A retrospective cohort study[J]. Hippocampus, 2021, 31(10): 1092-1103. DOI: 10.1002/hipo.23375.
[38]
Finke C, Kopp UA, Pajkert A, et al. Structural Hippocampal Damage Following Anti-N-Methyl-D-Aspartate Receptor Encephalitis[J]. Biol Psychiatry, 2016, 79(9): 727-734. DOI: 10.1016/j.biopsych.2015.02.024.
[39]
Liang Y, Cai L, Zhou X, et al. Voxel-based analysis and multivariate pattern analysis of diffusion tensor imaging study in anti-NMDA receptor encephalitis[J]. Neuroradiology, 2020, 62(2): 231-239. DOI: 10.1007/s00234-019-02321-x.
[40]
Liu JH, Xiang YY, Zeng C, et al. Diffusion tensor imaging in assessment of structural brain networks in patients with anti-N-methyl-D-aspartate receptor encephalitis[J]. Chin J Radiol, 2022, 56(4): 356-363. DOI: 10.3760/cma.j.cn112149-20210426-00409.
[41]
Wang J, Duan Y, Zhang T, et al. Aberrant multimodal brain networks in patients with anti‐NMDA receptor encephalitis[J]. CNS Neurosci Ther, 2021, 27(6): 652-663. DOI: 10.1111/cns.13632.
[42]
Witt J, Helmstaedter C. Neuropsychological Evaluations in Limbic Encephalitis[J/OL]. Brain Sciences, 2021, 11(5) [2022-06-05]. https://www.mdpi.com/2076-3425/11/5/576. DOI: 10.3390/brainsci11050576.
[43]
Hang H, Zhang J, Chen D, et al. Clinical Characteristics of Cognitive Impairment and 1-Year Outcome in Patients With Anti-LGI1 Antibody Encephalitis[J/OL]. Front Neurol, 2020, 11 [2022-06-05]. https://www.frontiersin.org/articles/10.3389/fneur.2020.00852/full. DOI: 10.3389/fneur.2020.00852.
[44]
Finke C, Prüss H, Heine J, et al. Evaluation of Cognitive Deficits and Structural Hippocampal Damage in Encephalitis With Leucine-Rich, Glioma-Inactivated 1 Antibodies[J/OL]. JAMA Neurology, 2017, 74(1) [2022-06-05]. https://jamanetwork.com/journals/jamaneurology/fullarticle/2586258. DOI: 10.1001/jamaneurol.2016.4226.
[45]
Heine J, Prüss H, Kopp UA, et al. Beyond the limbic system: disruption and functional compensation of large-scale brain networks in patients with anti-LGI1 encephalitis[J]. J Neurol Neurosurg Psychiatry, 2018, 89(11): 1191-1199. DOI: 10.1136/jnnp-2017-317780.
[46]
Szots M, Blaabjerg M, Orsi G, et al. Global brain atrophy and metabolic dysfunction in LGI1 encephalitis: A prospective multimodal MRI study[J]. J Neurol Sci, 2017, 376: 159-165. DOI: 10.1016/j.jns.2017.03.020.
[47]
Graus F, Saiz A, Dalmau J. GAD antibodies in neurological disorders - insights and challenges[J]. Nat Rev Neurol, 2020, 16(7): 353-365. DOI: 10.1038/s41582-020-0359-x.
[48]
Wagner J, Schoene Bake JC, Witt JA, et al. Distinct white matter integrity in glutamic acid decarboxylase and voltage‐gated potassium channel‐complex antibody‐associated limbic encephalitis[J]. Epilepsia (Copenhagen), 2016, 57(3): 475-483. DOI: 10.1111/epi.13297.
[49]
Dhollander T, Clemente A, Singh M, et al. Fixel-based Analysis of Diffusion MRI: Methods, Applications, Challenges and Opportunities[J]. NeuroImage, 2021, 241 [2022-06-05]. https://linkinghub.elsevier.com/retrieve/pii/S1053-8119(21)00692-3. DOI: 10.1016/j.neuroimage.2021.118417.
[50]
Bauer T, Ernst L, David B, et al. Fixel-based analysis links white matter characteristics, serostatus and clinical features in limbic encephalitis[J]. Neuroimage Clin, 2020, 27 [2022-4-24]. https://linkinghub.elsevier.com/retrieve/pii/S2213-1582(20)30126-1. DOI: 10.1016/j.nicl.2020.102289.

PREV Research progress in radiomics on prognosis prediction of lower-grade gliomas
NEXT Research progress of MRI on brain plasticity in cervical spondylotic myelopathy
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn