Share:
Share this content in WeChat
X
Review
Research progress of MRI on brain plasticity in cervical spondylotic myelopathy
SHAO Ziwei  HE Laichang 

Cite this article as: Shao ZW, He LC. Research progress of MRI on brain plasticity in cervical spondylotic myelopathy[J]. Chin J Magn Reson Imaging, 2022, 13(11): 137-140, 153. DOI:10.12015/issn.1674-8034.2022.11.027.


[Abstract] Cervical spondylotic myelopathy (CSM) is the most common form of chronic spinal cord compression, and the incidence of CSM has increased significantly in recent years due to the younger population with incorrect work and study posture. Compression of nerve fibers in the spinal cord is considered to be one of the main causes of symptoms in patients with CSM, yet some patients still have poor recovery after decompression surgery, and how to improve the prognosis has become a major issue for us. In recent years, with the development of imaging technology, we found that functional remodeling of the brain in addition to spinal cord compression may be one of the reasons for different symptoms. In this paper, we review the research on brain remodeling in CSM using magnetic resonance imaging in recent years, aiming to provide a better imaging basis for treating cervical spondylosis and predicting prognosis.
[Keywords] cervical spondylotic myelopathy;brain plasticity;imaging marker;neuroimaging;magnetic resonance imaging

SHAO Ziwei   HE Laichang*  

Department of Imaging, the First Affiliated Hospital of Nanchang University, Nanchang 330000, China

He LC, E-mail: laichang_he@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 81460329); Natural Science Foundation of Jiangxi Province (No. 20192ACBL20039, 2018BAB205063).
Received  2022-06-02
Accepted  2022-10-08
DOI: 10.12015/issn.1674-8034.2022.11.027
Cite this article as: Shao ZW, He LC. Research progress of MRI on brain plasticity in cervical spondylotic myelopathy[J]. Chin J Magn Reson Imaging, 2022, 13(11): 137-140, 153. DOI:10.12015/issn.1674-8034.2022.11.027.

[1]
Lannon M, Kachur E. Degenerative Cervical Myelopathy: Clinical Presentation, Assessment, and Natural History[J/OL]. J Clin Med, 2021, 10(16) [2022-06-01]. https://pubmed.ncbi.nlm.nih.gov/34441921/. DOI: 10.3390/jcm10163626.
[2]
He Z, Wang N, Kang LQ, et al. Analysis of pathological parameters of cervical spondylotic myelopathy using magnetic resonance imaging[J/OL]. Clin Neurol Neurosurg, 2020, 189 [2022-06-01]. https://pubmed.ncbi.nlm.nih.gov/31846844/. DOI: 10.1016/j.clineuro.2019.105631.
[3]
Dong FL, Wu YY, Song PW, et al. A preliminary study of 3.0-T magnetic resonance diffusion tensor imaging in cervical spondylotic myelopathy[J]. Eur Spine J, 2018, 27(8): 1839-1845. DOI: 10.1007/s00586-018-5579-z.
[4]
Jiang W, Han X, Guo H, et al. Usefulness of conventional magnetic resonance imaging, diffusion tensor imaging and neurite orientation dispersion and density imaging in evaluating postoperative function in patients with cervical spondylotic myelopathy[J]. J Orthop Translat, 2018, 15: 59-69. DOI: 10.1016/j.jot.2018.08.006.
[5]
Zheng W, Chen H, Wang N, et al. Application of Diffusion Tensor Imaging Cutoff Value to Evaluate the Severity and Postoperative Neurologic Recovery of Cervical Spondylotic Myelopathy[J/OL]. World Neurosurg, 2018, 118 [2022-10-06]. https://pubmed.ncbi.nlm.nih.gov/30026160/. DOI: 10.1016/j.wneu.2018.07.067.
[6]
Mccormick JR, Sama AJ, Schiller NC, et al. Cervical Spondylotic Myelopathy: A Guide to Diagnosis and Management[J]. J Am Board Fam Med, 2020, 33(2): 303-313. DOI: 10.3122/jabfm.2020.02.190195.
[7]
Li XY, Lu SB, Sun XY, et al. Clinical and magnetic resonance imaging predictors of the surgical outcomes of patients with cervical spondylotic myelopathy[J]. Clin Neurol Neurosurg, 2018, 174: 137-143. DOI: 10.1016/j.clineuro.2018.09.003.
[8]
Hrabalek L, Hok P, Hlustik P, et al. Longitudinal brain activation changes related to electrophysiological findings in patients with cervical spondylotic myelopathy before and after spinal cord decompression: an fMRI study[J]. Acta Neurochir (Wien), 2018, 160(5): 923-932. DOI: 10.1007/s00701-018-3520-1.
[9]
Mohammed H, Hollis ER. Cortical Reorganization of Sensorimotor Systems and the Role of Intracortical Circuits After Spinal Cord Injury[J]. Neurotherapeutics, 2018, 15(3): 588-603. DOI: 10.1007/s13311-018-0638-z.
[10]
Zhao SJ, Han JW, Hu XT, et al. Extendable supervised dictionary learning for exploring diverse and concurrent brain activities in task-based fMRI[J]. Brain Imaging Behav, 2018, 12(3): 743-57. DOI: 10.1007/s11682-017-9733-8.
[11]
Duggal N, Rabin D, Bartha R, et al. Brain reorganization in patients with spinal cord compression evaluated using fMRI[J]. Neurology, 2010, 74(13): 1048-1054. DOI: 10.1212/WNL.0b013e3181d6b0ea.
[12]
Bhagavatula ID, Shukla D, Sadashiva N, et al. Functional cortical reorganization in cases of cervical spondylotic myelopathy and changes associated with surgery[J/OL]. Neurosurg Focus, 2016, 40(6) [2022-10-06]. https://pubmed.ncbi.nlm.nih.gov/27246485/. DOI: 10.3171/2016.3.FOCUS1635.
[13]
Cronin AE, Detombe SA, Duggal CA, et al. Spinal cord compression is associated with brain plasticity in degenerative cervical myelopathy[J/OL]. Brain Commun, 2021, 3(3) [2022-10-06]. https://pubmed.ncbi.nlm.nih.gov/34396102/. DOI: 10.1093/braincomms/fcab131.
[14]
Biswal B, Yetkin FZ, Haughton VM, et al. Functional Connectivity in the Motor Cortex of Resting Human Brain Using Echo-Planar MRI[J]. 1995, 34(4): 537-541. DOI: 10.1002/mrm.1910340409.
[15]
Yang J, Gohel S, Vachha B. Current methods and new directions in resting state fMRI[J]. Clin Imaging, 2020, 65: 47-53. DOI: 10.1016/j.clinimag.2020.04.004.
[16]
Takenaka S, Kan S, Seymour B, et al. Resting-state Amplitude of Low-frequency Fluctuation is a Potentially Useful Prognostic Functional Biomarker in Cervical Myelopathy[J]. Clin Orthop Relat Res, 2020, 478(7): 1667-1680. DOI: 10.1097/CORR.0000000000001157.
[17]
Tan YM, Zhou FQ, He LC, et al. Alteration of Cerebral Regional Homogeneity in Cervical Spondylotic Myelopathy: A Resting State Functional Magnetic Resonance Imaging Study[J]. J Clin Radiol, 2015, 34(10): 544-548. DOI: 10.13437/j.cnki.jcr.2015.10.003.
[18]
Tan YM, Zhou FQ, Wu L, et al. Alteration of Regional Homogeneity within the Sensorimotor Network after Spinal Cord Decompression in Cervical Spondylotic Myelopathy: A Resting-State fMRI Study[J/OL]. Biomed Res Int, 2015, 2015 [2022-06-02]. https://pubmed.ncbi.nlm.nih.gov/26605335/. DOI: 10.1155/2015/647958.
[19]
Zhao R, Guo X, Wang Y, et al. Functional MRI evidence for primary motor cortex plasticity contributes to the disease's severity and prognosis of cervical spondylotic myelopathy patients[J]. Eur Radiol, 2022, 32(6): 3693-3704. DOI: 10.1007/s00330-021-08488-3.
[20]
Kuang C, Zha Y. Abnormal intrinsic functional activity in patients with cervical spondylotic myelopathy: a resting-state fMRI study[J]. Neuropsychiatr Dis Treat, 2019, 15: 2371-2383. DOI: 10.2147/NDT.209952.
[21]
Chen Z, Wang Q, Liang M, et al. Visual cortex neural activity alteration in cervical spondylotic myelopathy patients: a resting-state fMRI study[J]. Neuroradiology, 2018, 60(9): 921-32. DOI: 10.1007/s00234-018-2061-x.
[22]
Ramani R. Connectivity[J]. Curr Opin Anaesthesiol, 2015, 28(5): 498-504. DOI: 10.1097/ACO.0000000000000237.
[23]
Holly LT, Wang C, Woodworth DC, et al. Neck disability in patients with cervical spondylosis is associated with altered brain functional connectivity[J]. J Clin Neurosci, 2019, 69: 149-154. DOI: 10.1016/j.jocn.2019.08.008.
[24]
Zhou FQ, Wu L, Liu XJ, et al. Characterizing Thalamocortical Disturbances in Cervical Spondylotic Myelopathy: Revealed by Functional Connectivity under Two Slow Frequency Bands[J/OL]. PLoS One, 2015, 10(6) [2022-10-06]. https://pubmed.ncbi.nlm.nih.gov/26053316/. DOI: 10.1371/journal.pone.0125913.
[25]
Peng XJ, Tan YM, He LC, et al. Alterations of functional connectivity between thalamus and cortex before and after decompression in cervical spondylotic myelopathy patients: a resting-state functional MRI study[J]. Neuroreport, 2020, 31(5): 365-371. DOI: 10.1097/Wnr.0000000000001346.
[26]
Zhao GS, Zhang CL, Zhan YR, et al. The Correlation between Functional Connectivity of the Primary Somatosensory Cortex and Cervical Spinal Cord Microstructural Injury in Patients with Cervical Spondylotic Myelopathy[J/OL]. Markers, 2022, 2022 [2022-06-02]. https://pubmed.ncbi.nlm.nih.gov/35096201/. DOI: 10.1155/2022/2623179.
[27]
Sawada M, Nakae T, Munemitsu T, et al. Functional Connectivity Analysis and Prediction of Pain Relief in Association with Spinal Decompression Surgery[J/OL]. World Neurosurg, 2020, 139 [2022-10-06]. https://pubmed.ncbi.nlm.nih.gov/32298822/. DOI: 10.1016/j.wneu.2020.03.200.
[28]
Zhang CL, Tan YM, He LC, et al. Resting-State fMRI Observition on Functional Connectivity of Primary Somatosensory Cortex in Patients with Cervical Spondylotic Myelopathy[J] Chin J Med Imaging Techno, 2019, 35(1): 36-40. DOI: 10.13929/j.1003-3289.201804134.
[29]
Chen Z, Zhao R, Wang Q, et al. Functional Connectivity Changes of the Visual Cortex in the Cervical Spondylotic Myelopathy Patients: A Resting-State fMRI Study[J/OL]. Spine (Phila Pa 1976), 2020, 45(5) [2022-10-06]. https://pubmed.ncbi.nlm.nih.gov/31513096/. DOI: 10.1097/BRS.0000000000003245.
[30]
Zhao R, Su Q, Chen Z, et al. Neural Correlates of Cognitive Dysfunctions in Cervical Spondylotic Myelopathy Patients: A Resting-State fMRI Study[J/OL]. Front Neurol, 2020, 11 [2022-10-06]. https://pubmed.ncbi.nlm.nih.gov/33424749/. DOI: 10.3389/fneur.2020.596795.
[31]
Korhonen O, Zanin M, Papo D. Principles and open questions in functional brain network reconstruction[J]. Human Brain Mapping, 2021, 42(11): 3680-3711. DOI: 10.1002/hbm.25462.
[32]
Luo W, Greene AS, Constable RT. Within node connectivity changes, not simply edge changes, influence graph theory measures in functional connectivity studies of the brain[J/OL]. NeuroImage, 2021, 240 [2022-10-06]. https://pubmed.ncbi.nlm.nih.gov/34224851/. DOI: 10.1016/j.neuroimage.2021.118332.
[33]
Cao Y, Zhan YR, Du M, et al. Disruption of human brain connectivity networks in patients with cervical spondylotic myelopathy[J]. Quant Imaging Med Surg, 2021, 11(8): 3418-3430. DOI: 10.21037/qims-20-874.
[34]
Kuang C, Zha Y, Liu C, et al. Altered Topological Properties of Brain Structural Covariance Networks in Patients With Cervical Spondylotic Myelopathy[J/OL]. Front Hum Neurosci, 2020, 14 [2022-10-06]. https://pubmed.ncbi.nlm.nih.gov/33100992/. DOI: 10.3389/fnhum.2020.00364.
[35]
Martinez-Heras E, Grussu F, Prados F, et al. Diffusion-Weighted Imaging: Recent Advances and Applications[J]. Semin Ultrasound CT MR, 2021, 42(5): 490-506. DOI: 10.1053/j.sult.2021.07.006.
[36]
Wang LB, Yu B, Li Q, et al. Sensorimotor cortex atrophy in patients with cervical spondylotic myelopathy[J]. Neuroreport, 2018, 29(10): 826-32. DOI: 10.1097/WNR.0000000000001039.
[37]
Liu M, Tan YM, Zhang CL, et al. Cortical anatomy plasticity in cases of cervical spondylotic myelopathy associated with decompression surgery: A strobe-compliant study of structural magnetic resonance imaging[J/OL]. Medicine (Baltimore), 2021, 100(4) [2022-10-06. https://journals.lww.com/10.1097/MD.0000000000024190. DOI: 10.1097/MD.0000000000024190.
[38]
Jutten K, Mainz V, Schubert GA, et al. Cortical volume reductions as a sign of secondary cerebral and cerebellar impairment in patients with degenerative cervical myelopathy[J/OL]. Neuroimage Clin, 2021, 30 [2022-10-06]. https://pubmed.ncbi.nlm.nih.gov/33773163/. DOI: 10.1016/j.nicl.2021.102624.
[39]
Oughourlian TC, Wang C, Salamon N, et al. Sex-Dependent Cortical Volume Changes in Patients with Degenerative Cervical Myelopathy[J/OL]. J Clin Med, 2021, 10(17) [2022-10-06. https://pubmed.ncbi.nlm.nih.gov/34501413/. DOI: 10.3390/jcm10173965.
[40]
Zhan Yaru. Study on White Matter Microstructure in Patients with Cervical Spondylotic Myelopathy Based on TBSS[D]. Nanchang: Nanchang University, 2020. DOI: 10.27232/d.cnki.gnchu.2020.000740.
[41]
Wu KF, He LC, Tan YM. Longitudinal study of somatosensory conduction fiber structure after decompression in patients with cervical spondylotic myelopathy[J]. Chin J Magn Reson Imaging, 2019, 10(11): 830-834. DOI: 10.12015/issn.1674-8034.2019.11.007.
[42]
Holly LT, Freitas B, Mcarthur DL, et al. Proton magnetic resonance spectroscopy to evaluate spinal cord axonal injury in cervical spondylotic myelopathy[J]. J Neurosurg-Spine, 2009, 10(3): 194-200. DOI: 10.3171/2008.12.Spine08367.
[43]
Kowalczyk I, Duggal N, Bartha R. Proton magnetic resonance spectroscopy of the motor cortex in cervical myelopathy[J]. Brain, 2012, 135(Pt 2): 461-468. DOI: 10.1093/brain/awr328.
[44]
Aleksanderek I, McGregor SMK, Stevens TK, et al. Cervical spondylotic Myelopathy: Metabolite Changes in the Primary Motor Cortex after Surgery[J]. 2017, 282(3): 817-825. DOI: 10.1148/radiol.2016152083.
[45]
Goncalves S, Stevens TK, Doyle-Pettypiece P, et al. N-acetylaspartate in the motor and sensory cortices following functional recovery after surgery for cervical spondylotic myelopathy[J]. J Neurosurg Spine, 2016, 25(4): 436-443. DOI: 10.3171/2016.2.SPINE15944.
[46]
Zhou FQ, Huang MH, Wu L, et al. Altered perfusion of the sensorimotor cortex in patients with cervical spondylotic myelopathy: an arterial spin labeling study[J]. J Pain Res, 2018, 11: 181-190. DOI: 10.2147/JPR.S148076.
[47]
Wei WZ, Wang T, Abulizi T, et al. Altered Coupling Between Resting-State Cerebral Blood Flow and Functional Connectivity Strength in Cervical Spondylotic Myelopathy Patients[J/OL]. Front Neurol, 2021, 12 [2022-10-06]. https://pubmed.ncbi.nlm.nih.gov/34566857/. DOI: 10.3389/fneur.2021.713520.
[48]
Braun U, Schaefer A, Betzel RF, et al. From Maps to Multi-dimensional Network Mechanisms of Mental Disorders[J]. Neuron, 2018, 97(1): 14-31. DOI: 10.1016/j.neuron.2017.11.007
[49]
Guillon J, Chavez M, Battiston F, et al. Disrupted core-periphery structure of multimodal brain networks in Alzheimer's disease[J]. Netw Neurosci, 2019, 3(2): 635-652. DOI: 10.1162/netn_a_00087.
[50]
Cai LH, Wei XL, Liu J, et al. Functional Integration and Segregation in Multiplex Brain Networks for Alzheimer's Disease[J/OL]. Front Neurosci, 2020, 14 [2022-10-06]. https://pubmed.ncbi.nlm.nih.gov/32132892/. DOI: 10.3389/fnins.2020.00051.

PREV Research progress of diffusion magnetic resonance imaging in autoimmune encephalitis
NEXT Progress of imaging studies of the patients with cardiac involvement in polymyositis/dermatomyositis
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn