Share:
Share this content in WeChat
X
Special Focus
Characteristics of the left ventricular myocardial strain in Fabry disease and its value in differential diagnosis of hypertrophic cardiomyopathy
YANG Kai  LI Changcheng  XU Yangfei  WANG Jiaxin  DONG Zhixiang  YANG Shujuan  YU Shiqin  SONG Yanyan  MA Xuan  CUI Chen  CHEN Xiuyu  LU Minjie  ZHAO Shihua 

Cite this article as: Yang K, Li CC, Xu YF, et al. Characteristics of the left ventricular myocardial strain in Fabry disease and its value in differential diagnosis of hypertrophic cardiomyopathy[J]. Chin J Magn Reson Imaging, 2022, 13(12): 13-19, 25. DOI:10.12015/issn.1674-8034.2022.12.003.


[Abstract] Objective To analyze the characteristics of left ventricular myocardial strain in Fabry disease and its value in differential diagnosis of hypertrophic cardiomyopathy (HCM).Materials and Methods A total of 10 cases with Fabry disease confirmed by pathology or gene in our hospital from January 2018 to June 2022 were retrospectively analyzed. At the same time, clinical data of 20 sex-and age-matched HCM patients and 20 normal controls (normal control group) were included. The clinical baseline data, MR parameters and left ventricular strain were compared between Fabry disease group and normal control group or HCM group.Results Among the Fabry disease group (6 were female and 4 were male, and the age was 50.6±9.7 years), nine patients had clinical symptoms, including 6 patients with renal dysfunction or peripheral neuralgia. Compared with the normal control group, the left ventricular ejection fraction in the Fabry disease group was not significantly decreased [(63.1±7.8)% vs. (64.4±4.3)%, P=0.641], but the global strain in the three directions and the corresponding systolic and early diastolic strain rates were significantly decreased (all P<0.001). Compared with the HCM group, the global radial strain (GRS) and global circumferential strain (GCS) of Fabry disease group were significantly decreased (all P<0.05). Multivariate logistic regression analysis showed that GRS was independently correlated with Fabry disease (OR=0.84, 95% CI: 0.72-0.97, P=0.017), and the area under the curve (AUC) to distinguish Fabry disease from HCM was 0.813.Conclusions Left ventricular strain can early reflect subclinical myocardial dysfunction in patients with Fabry disease. GRS can effectively distinguish Fabry disease from HCM, which is a new diagnostic index with potential value.
[Keywords] Fabry disease;hypertrophic cardiomyopathy;myocardial hypertrophy;strain;magnetic resonance imaging;cardiac magnetic resonance feature tracking technology;cardiac magnetic resonance cine imaging

YANG Kai1   LI Changcheng2   XU Yangfei3   WANG Jiaxin1   DONG Zhixiang1   YANG Shujuan1   YU Shiqin1   SONG Yanyan1   MA Xuan1   CUI Chen1   CHEN Xiuyu1   LU Minjie1   ZHAO Shihua1*  

1 Department of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China

2 Department of Radiology, Taian City Hospital (Taian Central Hospital Affiliated to Qingdao University), Taian 271099, China

3 Department of Radiology, Chizhou City People's Hospital, Chizhou 247100, China

Zhao SH, E-mail: cjrzhaoshihua2009@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Key Research and Development Program of China (No. 2021YFF0501400, 2021YFF0501404); Key Project of National Natural Science Foundation of China (No. 81930044).
Received  2022-08-14
Accepted  2022-12-08
DOI: 10.12015/issn.1674-8034.2022.12.003
Cite this article as: Yang K, Li CC, Xu YF, et al. Characteristics of the left ventricular myocardial strain in Fabry disease and its value in differential diagnosis of hypertrophic cardiomyopathy[J]. Chin J Magn Reson Imaging, 2022, 13(12): 13-19, 25. DOI:10.12015/issn.1674-8034.2022.12.003.

[1]
Chinese Fabry Disease Expert Panel. Expert consensus for diagnosis and treatment of Fabry disease in China (2021)[J]. Chin J Intern Med, 2021, 60(4): 321-330. DOI: 10.3760/cma.j.cn112138-20201218-01028.
[2]
Germain DP. Fabry disease[J/OL]. Orphanet J Rare Dis, 2010, 5: 30 [2022-08-14]. https://pubmed.ncbi.nlm.nih.gov/21092187/. DOI: 10.1186/1750-1172-5-30.
[3]
Germain DP, Altarescu G, Barriales-Villa R, et al. An expert consensus on practical clinical recommendations and guidance for patients with classic Fabry disease[J]. Mol Genet Metab, 2022, 137(1-2): 49-61. DOI: 10.1016/j.ymgme.2022.07.010.
[4]
Muntean C, Starcea IM, Stoica C, et al. Clinical Characteristics, Renal Involvement, and Therapeutic Options of Pediatric Patients with Fabry Disease[J/OL]. Front Pediatr, 2022, 10: 908657 [2022-08-11]. https://pubmed.ncbi.nlm.nih.gov/35722479/. DOI: 10.3389/fped.2022.908657.
[5]
Palaiodimou L, Kokotis P, Zompola C, et al. Fabry Disease: current & novel therapeutic strategies. A narrative review[J/OL]. Curr Neuropharmacol, 2022 [2022-12-04]. https://pubmed.ncbi.nlm.nih.gov/35652398/. DOI: 10.2174/1570159X20666220601124117.
[6]
Waldek S, Patel MR, Banikazemi M, et al. Life expectancy and cause of death in males and females with Fabry disease: findings from the Fabry Registry[J]. Genet Med, 2009, 11(11): 790-796. DOI: 10.1097/GIM.0b013e3181bb05bb.
[7]
Militaru S, Jurcuț R, Adam R, et al. Echocardiographic features of Fabry cardiomyopathy-Comparison with hypertrophy-matched sarcomeric hypertrophic cardiomyopathy[J]. Echocardiography, 2019, 36(11): 2041-2049. DOI: 10.1111/echo.14508.
[8]
Labombarda F, Saloux E, Milesi G, et al. Loss of base-to-apex circumferential strain gradient: A specific pattern of Fabry cardiomyopathy?[J]. Echocardiography, 2017, 34(4): 504-510. DOI: 10.1111/echo.13496.
[9]
Onishi T, Saha SK, Delgado-Montero A, et al. Global longitudinal strain and global circumferential strain by speckle-tracking echocardiography and feature-tracking cardiac magnetic resonance imaging: comparison with left ventricular ejection fraction[J]. J Am Soc Echocardiogr, 2015, 28(5): 587-596. DOI: 10.1016/j.echo.2014.11.018.
[10]
Xu J, Yang W, Zhao S, et al. State-of-the-art myocardial strain by CMR feature tracking: clinical applications and future perspectives[J]. Eur Radiol, 2022, 32(8): 5424-5435. DOI: 10.1007/s00330-022-08629-2.
[11]
Meucci MC, Lillo R, Lombardo A, et al. Comparative analysis of right ventricular strain in Fabry cardiomyopathy and sarcomeric hypertrophic cardiomyopathy[J/OL]. Eur Heart J Cardiovasc Imaging, 2022, 28: jeac151 [2022-12-04]. https://pubmed.ncbi.nlm.nih.gov/35900225/. DOI: 10.1093/ehjci/jeac151.
[12]
Wu JC, Ho CY, Skali H, et al. Cardiovascular manifestations of Fabry disease: relationships between left ventricular hypertrophy, disease severity, and alpha-galactosidase A activity[J]. Eur Heart J, 2010, 31(9): 1088-1097. DOI: 10.1093/eurheartj/ehp588.
[13]
Yousef Z, Elliott PM, Cecchi F, et al. Left ventricular hypertrophy in Fabry disease: a practical approach to diagnosis[J]. Eur Heart J, 2013, 34(11): 802-808. DOI: 10.1093/eurheartj/ehs166.
[14]
Hung CL, Wu YW, Lin CC, et al. 2021 TSOC Expert Consensus on the Clinical Features, Diagnosis, and Clinical Management of Cardiac Manifestations of Fabry Disease[J]. Acta Cardiol Sin, 2021, 37(4): 337-354. DOI: 10.6515/ACS.202107_37(4).20210601A.
[15]
Leiner T, Bogaert J, Friedrich MG, et al. SCMR Position Paper (2020) on clinical indications for cardiovascular magnetic resonance[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 76 [2022-12-04]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7649060/. DOI: 10.1186/s12968-020-00682-4.
[16]
Giusca S, Steen H, Montenbruck M, et al. Multi-parametric assessment of left ventricular hypertrophy using late gadolinium enhancement, T1 mapping and strain-encoded cardiovascular magnetic resonance[J/OL]. J Cardiovasc Magn Reson, 2021, 23(1): 92 [2022-12-04]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8273957/. DOI: 10.1186/s12968-021-00775-8.
[17]
Xu YF, Yang K, Liu XF, et al. Clinical and cardiac MR characteristics of heart involvement in patients with Fabry disease[J]. Chin J Radiol, 2022, 56(2): 168-174. DOI: 10.3760/cma.j.cn112149-20210416-00379.
[18]
Deva DP, Hanneman K, Li Q, et al. Cardiovascular magnetic resonance demonstration of the spectrum of morphological phenotypes and patterns of myocardial scarring in Anderson-Fabry disease[J/OL]. J Cardiovasc Magn Reson, 2016, 18: 14 [2022-12-04]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4818406/. DOI: 10.1186/s12968-016-0233-6.
[19]
Perry R, Shah R, Saiedi M, et al. The Role of Cardiac Imaging in the Diagnosis and Management of Anderson-Fabry Disease[J]. JACC Cardiovasc Imaging, 2019, 12(7): 1230-1242. DOI: 10.1016/j.jcmg.2018.11.039.
[20]
Liu J, Zhao S, Yu S, et al. Patterns of Replacement Fibrosis in Hypertrophic Cardiomyopathy[J]. Radiology, 2022, 302(2): 298-306. DOI: 10.1148/radiol.2021210914.
[21]
Yang K, Wei MD, Chen XY, et al. Anderson-Fabry disease: a rare phenocopy of hypertrophic cardiomyopathy[J/OL]. Eur Heart J Cardiovasc Imaging, 2021, 22(7): e94 [2022-12-04]. https://academic.oup.com/ehjcimaging/article/22/7/e94/6054270. DOI: 10.1093/ehjci/jeaa349.
[22]
Karamitsos TD, Francis JM, Myerson S, et al. The role of cardiovascular magnetic resonance imaging in heart failure[J]. J Am Coll Cardiol, 2009, 54(15): 1407-1424. DOI: 10.1016/j.jacc.2009.04.094.
[23]
Karur GR, Robison S, Iwanochko RM, et al. Use of Myocardial T1 Mapping at 3.0 T to Differentiate Anderson-Fabry Disease from Hypertrophic Cardiomyopathy[J]. Radiology, 2018, 288(2): 398-406. DOI: 10.1148/radiol.2018172613.
[24]
Robinson AA, Chow K, Salerno M. Myocardial T1 and ECV Measurement: Underlying Concepts and Technical Considerations[J]. JACC Cardiovasc Imaging, 2019, 12(11): 2332-2344. DOI: 10.1016/j.jcmg.2019.06.031.
[25]
Meloni A, Martini N, Positano V, et al. Myocardial T1 Values at 1.5 T: Normal Values for General Electric Scanners and Sex-Related Differences[J]. J Magn Reson Imaging, 2021, 54(5): 1486-1500. DOI: 10.1002/jmri.27639.
[26]
Nordin S, Kozor R, Medina-Menacho K, et al. Proposed Stages of Myocardial Phenotype Development in Fabry Disease[J]. JACC Cardiovasc Imaging, 2019, 12(8): 1673-1683. DOI: 10.1016/j.jcmg.2018.03.020.
[27]
Chen X, Li L, Cheng H, et al. Early Left Ventricular Involvement Detected by Cardiovascular Magnetic Resonance Feature Tracking in Arrhythmogenic Right Ventricular Cardiomyopathy: The Effects of Left Ventricular Late Gadolinium Enhancement and Right Ventricular Dysfunction[J/OL]. J Am Heart Assoc, 2019, 8(17): e012989 [2022-12-04]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6755833/. DOI: 10.1161/JAHA.119.012989.
[28]
Hu R, Li R, Yang PC, et al. Advances in the clinical application of cardiac magnetic resonance in the diagnosis of left ventricular hypertrophy[J]. Chin J Magn Reson Imaging, 2022, 13(5): 151-153, 170. DOI: 10.12015/issn.1674-8034.2022.05.032.
[29]
Mahmod M, Raman B, Chan K, et al. Right ventricular function declines prior to left ventricular ejection fraction in hypertrophic cardiomyopathy[J/OL]. J Cardiovasc Magn Reson, 2022, 24(1): 36 [2022-12-04]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9190122/.
[30]
Zhao L, Zhang C, Tian J, et al. Quantification of myocardial deformation in patients with Fabry disease by cardiovascular magnetic resonance feature tracking imaging[J]. Cardiovasc Diagn Ther, 2021, 11(1): 91-101. DOI: 10.21037/cdt-20-897.
[31]
Zada M, Lo Q, Boyd AC, et al. Basal Segmental Longitudinal Strain: A Marker of Subclinical Myocardial Involvement in Anderson-Fabry Disease[J]. J Am Soc Echocardiogr, 2021, 34(4): 405-413. DOI: 10.1016/j.echo.2020.11.009.

PREV Heterogeneous parameters of non-contrast enhanced CMR T1/T2 mapping in detecting cardiac involvement in neuromuscular diseases
NEXT The relationship of left ventricular myocardial fibrosis and left atrial function parameters of patients with hypertensive heart disease
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn