Share:
Share this content in WeChat
X
Special Focus
The relationship of left ventricular myocardial fibrosis and left atrial function parameters of patients with hypertensive heart disease
XIA Rui  TAO Li  LIAO Jichun  ZHANG Zhiwei  YANG Haitao  LI Yongmei  LÜ Fajin  GAO Fabao 

Cite this article as: Xia R, Tao L, Liao JC, et al. The relationship of left ventricular myocardial fibrosis and left atrial function parameters of patients with hypertensive heart disease[J]. Chin J Magn Reson Imaging, 2022, 13(12): 20-25. DOI:10.12015/issn.1674-8034.2022.12.004.


[Abstract] Objective To investigate the characteristics of left ventricular myocardial fibrosis and the changes of left atrial and ventricular cardiac function in patients with hypertensive heart disease (HHD) by cardiac magnetic resonance (CMR), and to analyze the correlation between segmental left ventricular fibrosis and left atrial and ventricular function parameters.Materials and Methods Sixteen patients diagnosed with HHD cases (HHD group) in the Department of Cardiology of the First Affiliated Hospital of Chongqing Medical University from December 2021 to June 2022 and 16 data of healthy controls in the same period (control group) were retrospective analyzed. Left atrial ejection fraction (LAEF), left atrial end-diastolic volume (LAEDV), left atrial end-systolic volume (LAESV), left ventricular ejection fraction (LVEF), left ventricular end-diastolic volume (LVEDV), and left ventricular end-systolic volume (LVESV) were measured by cardiac cine sequences. T1 mapping sequence images were performed before and 15 min after the injection of Gd-DTPA. The commercial post-processing software was used to measure the left ventricular extracellular volume (ECV) and obtain the left ventricular myocardial T1 value (pre-T1) before contrast agent injection. The correlation between the values of ECV and pre-T1 and the functional parameters of the left atrium was analyzed in basal, midmyocardium and apex slices and ventricular septum, anterior myocardium, lateral myocardium and inferior myocardium segments.Results ECV and pre-T1 of HHD group were higher than control group (t=2.363, P=0.030; t=2.100, P=0.014). LAEF and LVEF were lower than control group (t=-3.932, P<0.001; t=-4.251, P<0.001), LAEDV, LAESV, LVEDV and LVESV were higher than control group (t=2.732, P=0.010; t=4.223, P<0.001; t=2.898, P=0.010; t=3.208, P=0.006). There was a linear correlation between ECV of midmyocardial septum and LAEF in HHD group (r=0.663, P=0.005), and there was a linear correlation between pre-T1 of midmyocardial septum, basal anterior, basal lateral wall and LAEF (r=0.530, P=0.035; r=0.627, P=0.009; r=0.579, P=0.019).Conclusions We found the presence of diffuse myocardial fibrosis and the left atrial and ventricular function decreased in HHD patients, and there is a certain correlation between some segments of left ventricular fibrosis and left atrial function parameters in HHD patients, which suggesting that there was a causal relationship between the left ventricular myocardial fibrosis and the deterioration of left atrial function in HHD patients. This provides evidence for the interaction between left ventricular myocardial structure and left atrial function to promote the progression and poor prognosis of HHD.
[Keywords] hypertensive heart disease;left ventricular;myocardial fibrosis;left atrium;cardiac function parameters;cardiac magnetic resonance;magnetic resonance imaging

XIA Rui1   TAO Li1   LIAO Jichun1   ZHANG Zhiwei1   YANG Haitao1   LI Yongmei1   LÜ Fajin1*   GAO Fabao2  

1 Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China

2 Department of Radiology, West China Hospital of Sichuan University, Chengdu 610044

Lü FJ, E-mail: 986570736@qq.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 81601546).
Received  2022-08-13
Accepted  2022-12-08
DOI: 10.12015/issn.1674-8034.2022.12.004
Cite this article as: Xia R, Tao L, Liao JC, et al. The relationship of left ventricular myocardial fibrosis and left atrial function parameters of patients with hypertensive heart disease[J]. Chin J Magn Reson Imaging, 2022, 13(12): 20-25. DOI:10.12015/issn.1674-8034.2022.12.004.

[1]
Schumann CL, Jaeger NR, Kramer CM. Recent Advances in Imaging of Hypertensive Heart Disease[J/OL]. Curr Hypertens Rep, 2019, 21(1): 3 [2022-08-10]. https://doi.org/10.1007/s11906-019-0910-6. DOI: 10.1007/s11906-019-0910-6.
[2]
Wang ZW, Wang W. Interpretation of Chinese guidelines for the management of hypertension (2018 revised edition)[J]. Chin J Cardiovasc Res, 2019, 17(3): 193-197. DOI: 10.3969/j.issn.1672-5301.2019.03.001.
[3]
Huang SM, Jiang GH, Wang TY, et al. Application of cardiac magnetic resonance extracellular volume in hypertensive heart disease[J]. Chin J Magn Reson Imaging, 2021, 12(3): 98-101. DOI: 10.12015/issn.1674-8034.2021.03.024.
[4]
Dai FH, Gong YS, Xue YY. Study on the application of 2D STI and RT-3DE in early evaluation of left atrial remodeling of patients with hypertension[J]. Chin Med Equip, 2020, 17(1): 43-47. DOI: 10.3969/J.ISSN.1672-8270.2020.01.012.
[5]
Blume GG, Mcleod CJ, Barnes ME, et al. Left atrial function: physiology, assessment, and clinical implications[J]. Eur J Echocardiogr, 2011, 12(6): 421-30. DOI: 10.1093/ejechocard/jeq175.
[6]
Chen XP, Jiang ZR, Tian Y, et al. Assessment of Left Atrial Early Function in Patients with Essential Hypertension by 3D Speckle Tracking Imaging[J]. Chin J Ultrasound Med, 2019, 35(4): 321-323. DOI: 10.3969/j.issn.1002-0101.2019.04.011.
[7]
Cui Y, Zhu Z, Qi X, et al. Relationship between circulating concentration of Ang Ⅱ, ADM and ADT and left ventricular hypertrophy in hypertension[J]. Am J Transl Res, 2019, 11(5): 3167-3175. DOI: 10.1097/01.hjh.0000548494.08509.2c.
[8]
Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension[J]. J Hypertens, 2018, 36(10): 1953-2041. DOI: 10.1097/HJH.0000000000001940.
[9]
Haaf P, Garg P, Messroghli DR, et al. Cardiac T1 Mapping and Extracellular Volume (ECV) in clinical practice: a comprehensive review[J/OL]. J Cardiovasc Magn Reson, 2016, 18: 89 [2022-08-10]. https://doi.org/10.1186/s12968-016-0308-4. DOI: 10.1186/s12968-016-0308-4.
[10]
Zhou D, Yang W, Yang Y, et al. Left atrial dysfunction may precede left atrial enlargement and abnormal left ventricular longitudinal function: a cardiac MR feature tracking study[J/OL]. BMC Cardiovasc Disord, 2022, 22(1): 99 [2022-08-10]. https://doi.org/10.1186/s12872-022-02532-w. DOI: 10.1186/s12872-022-02532-w.
[11]
Yamada A, Hashimoto N, Fujito H, et al. Comprehensive assessment of left atrial and ventricular remodeling in paroxysmal atrial fibrillation by the cardiovascular magnetic resonance myocardial extracellular volume fraction and feature tracking strain[J/OL]. Sci Rep, 2021, 11(1): 10941 [2022-08-10]. https://pubmed.ncbi.nlm.nih.gov/34035345/. DOI: 10.1038/s41598-021-90117-6.
[12]
Schelbert EB, Messroghli DR. Messroghli, et al. state of the art: clinical applications of cardiac T1 mapping[J]. Radiology, 2016, 278(3): 658-676. DOI: 10.1148/radiol.2016141802.
[13]
Pichler G, Redon J, Martínez F, et al. Cardiac magnetic resonance-derived fibrosis, strain and molecular biomarkers of fibrosis in hypertensive heart disease[J]. J Hypertens, 2020, 38(10): 2036-2042. DOI: 10.1097/HJH.0000000000002504.
[14]
Nayor M, Enserro DM, Xanthakis V, et al. Comorbidities and cardiometabolic disease: relationship with longitudinal changes in diastolic function[J]. Heart Fail, 2018, 6(4): 317-325. DOI: 10.1016/j.jchf.2017.12.018.
[15]
Yang Y, Yin G, Jiang Y, et al. Quantification of left atrial function in patients with non-obstructive hypertrophic cardiomyopathy by cardiovascular magnetic resonance feature tracking imaging: a feasibility and reproducibility study[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 1 [2022-08-10]. https://doi.org/10.1186/s12968-019-0589-5. DOI: 10.1186/s12968-019-0589-5.
[16]
Gunasekaran S, Lee DC, Knight BP, et al. Left Ventricular Extracellular Volume Expansion Is Not Associated with Atrial Fibrillation or Atrial Fibrillation-mediated Left Ventricular Systolic Dysfunction[J/OL]. Radiol Cardiothorac Imaging, 2020, 2(2): e190096 [2022-08-10]. https://doi.org/10.1148/ryct.2020190096. DOI: 10.1148/ryct.2020190096.
[17]
Li L, Chen X, Yin G, et al. Early detection of left atrial dysfunction assessed by CMR feature tracking in hypertensive patients[J]. Eur Radiol, 2020, 30(2): 702-711. DOI: 10.1007/s00330-019-06397-0.
[18]
Iyer NR, Le TT, Kui MSL, et al. Markers of Focal and Diffuse Nonischemic Myocardial Fibrosis Are Associated With Adverse Cardiac Remodeling and Prognosis in Patients With Hypertension: The REMODEL Study[J]. Hypertension, 2022, 79(8): 1804-1813. DOI: 10.1161/HYPERTENSIONAHA.122.19225.
[19]
Neilan TG, Mongeon FP, Shah RV, et al. Myocardial extracellular volume expansion and the risk of recurrent atrial fibrillation after pulmonary vein isolation[J]. JACC Cardiovasc Imaging, 2014, 7(1): 1-11. DOI: 10.1016/j.jcmg.2013.08.013.
[20]
Niu J, Zeng M, Wang Y, et al. Sensitive marker for evaluation of hypertensive heart disease: extracellular volume and myocardial strain[J/OL]. BMC Cardiovasc Disord, 2020, 20(1): 292 [2022-08-10]. https://doi.org/10.1186/s12872-020-01553-7. DOI: 10.1186/s12872-020-01553-7.
[21]
Wang S, Hu H, Lu M, et al. Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in hypertension and associated with left ventricular remodeling[J]. Eur Radiol, 2017, 27(11): 4620-4630. DOI: 10.1007/s00330-017-4841-9.
[22]
Wu LM, An DL, Yao QY, et al. Hypertrophic cardiomyopathy and left ventricular hypertrophy in hypertensive heart disease with mildly reduced or preserved ejection fraction: insight from altered mechanics and native T1 mapping[J]. Clin Radiol, 2017, 72(10): 835-843. DOI: 10.1016/j.crad.2017.04.019.
[23]
Thongsongsang R, Songsangjinda T, Tanapibunpon P, et al. Native T1 mapping and extracellular volume fraction for differentiation of myocardial diseases from normal CMR controls in routine clinical practice[J/OL]. BMC Cardiovasc Disord, 2021, 21(1): 270 [2022-08-10]. https://doi.org/10.1186/s12872-021-02086-3. DOI: 10.1186/s12872-021-02086-3.
[24]
Treibel TA, Zemrak F, Sado DM, et al. Extracellular volume quantification in isolated hypertension - changes at the detectable limits?[J/OL]. J Cardiovasc Magn Reson, 2015, 17(1): 74 [2022-08-10]. https://doi.org/10.1186/s12968-015-0176-3. DOI: 10.1186/s12968-015-0176-3.
[25]
Kuruvilla S, Janardhanan R, Antkowiak P, et al. Increased extracellular volume and altered mechanics are associated with LVH in hypertensive heart disease, not hypertension alone[J]. JACC Cardiovasc Imaging, 2015, 8(2): 172-180. DOI: 10.1016/j.jcmg.2014.09.020.
[26]
He J, Sirajuddin A, Li S, et al. Heart Failure With Preserved Ejection Fraction in Hypertension Patients: A Myocardial MR Strain Study[J]. J Magn Reson Imaging, 2021, 53(2): 527-539. DOI: 10.1002/jmri.27313.
[27]
Treibel TA, Fridman Y, Bering P, et al. Extracellular Volume Associates With Outcomes More Strongly Than Native or Post-Contrast Myocardial T1[J]. JACC Cardiovasc Imaging, 2020, 13(1Pt 1): 44-54. DOI: 10.1016/j.jcmg.2019.03.017.
[28]
Stacey RB, Hundley WG. Integrating Measures of Myocardial Fibrosis in the Transition from Hypertensive Heart Disease to Heart Failure[J/OL]. Curr Hypertens Rep, 2021, 23(4): 22 [2022-08-10]. https://doi.org/10.1007/s11906-021-01135-8. DOI: 10.1007/s11906-021-01135-8.
[29]
Zhou Z, Wang R, Wang H, et al. Myocardial extracellular volume fraction quantification in an animal model of the doxorubicin-induced myocardial fibrosis: a synthetic hematocrit method using 3T cardiac magnetic resonance[J]. Quant Imaging Med Surg, 2021, 11(2): 510-520. DOI: 10.21037/qims-20-501.
[30]
Chen W, Doeblin P, Al-Tabatabaee S, et al. Synthetic Extracellular Volume in Cardiac Magnetic Resonance Without Blood Sampling: a Reliable Tool to Replace Conventional Extracellular Volume[J/OL]. Circ Cardiovasc Imaging, 2022, 15(4): e013745 [2022-08-10]. https://doi.org/10.1161/CIRCIMAGING.121.013745. DOI: 10.1161/CIRCIMAGING.121.013745.

PREV Characteristics of the left ventricular myocardial strain in Fabry disease and its value in differential diagnosis of hypertrophic cardiomyopathy
NEXT Clinical value of CMR left ventricular long-axis strain in predicting LGE in cardiac amyloidosis secondary to multiple myeloma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn