Share:
Share this content in WeChat
X
Special Focus
The value of myocardial contraction fraction based on CMR film sequence in hypertrophic cardiomyopathy with preserved ejection fraction
JIANG Yuqi  SHU Jingwei  YU Honglin  ZHANG Xinna  ZHAO Lingling  YANG Panpan  LIU Xiaoqin  ZHAO Ren  QIAN Yinfeng  YU Yongqiang  LI Xiaohu 

Cite this article as: Jiang YQ, Shu JW, Yu HL, et al. The value of myocardial contraction fraction based on CMR film sequence in hypertrophic cardiomyopathy with preserved ejection fraction[J]. Chin J Magn Reson Imaging, 2022, 13(12): 38-44. DOI:10.12015/issn.1674-8034.2022.12.007.


[Abstract] Objective Myocardial contraction fraction (MCF) of cardiac magnetic resonance (CMR) was used to evaluate myocardial function in patients with hypertrophic cardiomyopathy with preserved ejection fraction (HCMpEF), and to explore the relationship between MCF and left ventricular morphology and function, cardiac fibrosis and myocardial strain parameters.Materials and Methods The data of 55 HCMpEF patients and 24 normal controls were retrospectively analyzed. The CVI 42 software was used to measure the relevant parameters of left ventricular function, including left ventricular ejection fraction (LVEF), left ventricular mass index (LVMi) and left ventricular maximal wall thickness (LVMWT), and quantitatively evaluate of myocardial native T1 mapping, extracellular volume fraction (ECV), myocardial indexed interstitial volume and late gadolinium enhancement (LGE), and measure 2D global strain parameters of the left ventricle include global radial strain (GRS), global circumferential strain (GCS) and global longitudinal strain (GLS). MCF was calculated by dividing left ventricular stroke volume (LVSV) by left ventricular myocardial volume (LVMV). Pearson or Spearman analysis was used for linear or monotonic nonlinear correlations. Independent-samples t-test or Mann-Whitney U-test was performed for multiple comparisons. The receiver operating characteristic (ROC) curve calculated the diagnostic efficacy of left ventricular function parameters for HCMpEF.Results MCF, GRS, GCS and GLS in the HCMpEF group was significantly lower than those in the control group (P<0.05), while LVMi and LVMWT were significantly higher than those in the control group (P<0.05). Correlation analysis showed that MCF correlated linearly with LVEF (r=0.402, P=0.002), LVMWT (r=-0.704, P=0.004), native T1 (r=-0.342, P=0.011), ECV (r=-0.348, P=0.009), GRS (r=0.642, P<0.001), GCS (r=-0.679, P<0.001) and GLS (r=-0.675, P<0.001), MCF correlated nonlinearly with LVMi (r=-0.710, P<0.001), LGE mass fraction (r=-0.655, P<0.001), myocardial indexed interstitial volume (r=-0.707, P<0.001). The area under the ROC curve of MCF, LVMi, GRS, GCS and GLS in differentiating the HCMpEF group from the healthy control group was 0.99, 0.97, 0.71, 0.77 and 0.97, respectively (P<0.05).Conclusions The MCF calculated by CMR is a simple and effective index to evaluate the overall cardiac systolic function of HCMpEF patients, which can provide a new quantitative imaging marker for the clinical diagnosis and treatment of HCMpEF.
[Keywords] hypertrophic cardiomyopathy;left ventricle;ejection fraction;myocardial contraction fraction;strain;fibrosis;magnetic resonance imaging;cardiac magnetic resonance cine imaging

JIANG Yuqi1   SHU Jingwei2   YU Honglin2   ZHANG Xinna2   ZHAO Lingling1   YANG Panpan1   LIU Xiaoqin2   ZHAO Ren3   QIAN Yinfeng2   YU Yongqiang2   LI Xiaohu1, 2*  

1 Department of Radiology, Fuyang Hospital of Anhui Medical University, Fuyang 236000, China

2 Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China

3 Department of Cardiology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China

Li XH, E-mail: lixiaohu@ahmu.edu.cn

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 82071897).
Received  2022-08-05
Accepted  2022-11-28
DOI: 10.12015/issn.1674-8034.2022.12.007
Cite this article as: Jiang YQ, Shu JW, Yu HL, et al. The value of myocardial contraction fraction based on CMR film sequence in hypertrophic cardiomyopathy with preserved ejection fraction[J]. Chin J Magn Reson Imaging, 2022, 13(12): 38-44. DOI:10.12015/issn.1674-8034.2022.12.007.

[1]
Rowland T. Sudden unexpected death in young athletes: reconsidering "hypertrophic cardiomyopathy"[J]. Pediatrics, 2009, 123(4): 1217-1222. DOI: 10.1542/peds.2008-0708.
[2]
Maron BJ, Casey SA, Hauser RG, et al. Clinical course of hypertrophic cardiomyopathy with survival to advanced age[J]. J Am Coll Cardiol, 2003, 42(5): 882-888. DOI: 10.1016/S0735-1097(03)00855-6.
[3]
Kubo T, Hirota T, Baba Y, et al. Patients' Characteristics and Clinical Course of Hypertrophic Cardiomyopathy in a Regional Japanese Cohort-Results From Kochi RYOMA Study[J]. Circ J, 2018, 82(3): 824-830. DOI: 10.1253/circj.CJ-17-0845.
[4]
Sugiura K, Kubo T, Ochi Y, et al. Very long-term prognosis in patients with hypertrophic cardiomyopathy: a longitudinal study with a period of 20 years[J]. ESC Heart Fail, 2022, 9(4): 2618-2625. DOI: 10.1002/ehf2.13983.
[5]
Greulich S, Seitz A, Herter D, et al. Long-term risk of sudden cardiac death in hypertrophic cardiomyopathy: a cardiac magnetic resonance outcome study[J]. Eur Heart J Cardiovasc Imaging, 2021, 22(7): 732-741. DOI: 10.1093/ehjci/jeaa423.
[6]
Huurman R, van der Velde N, Schinkel AFL, et al. Contemporary family screening in hypertrophic cardiomyopathy: the role of cardiovascular magnetic resonance[J]. Eur Heart J Cardiovasc Imaging, 2022, 23(9): 1144-1154. DOI: 10.1093/ehjci/jeac099.
[7]
King DL, El-Khoury Coffin L, Maurer MS. Myocardial contraction fraction: a volumetric index of myocardial shortening by freehand three-dimensional echocardiography[J]. J Am Coll Cardiol, 2002, 40(2): 325-329. DOI: 10.1016/s0735-1097(02)01944-7.
[8]
Chuang ML, Gona P, Salton CJ, et al. Usefulness of the Left Ventricular Myocardial Contraction Fraction in Healthy Men and Women to Predict Cardiovascular Morbidity and Mortality[J]. Am J Cardiol, 2012, 109(10): 1454-1458. DOI: 10.1016/j.amjcard.2012.01.357.
[9]
Arenja N, Fritz T, Andre F, et al. Myocardial contraction fraction derived from cardiovascular magnetic resonance cine images—reference values and performance in patients with heart failure and left ventricular hypertrophy[J]. Eur Heart J Cardiovasc Imaging, 2017, 18(12): 1414-1422. DOI: 10.1093/ehjci/jew324.
[10]
Arenja N, Riffel JH, Fritz T, et al. Diagnostic and Prognostic Value of Long-Axis Strain and Myocardial Contraction Fraction Using Standard Cardiovascular MR Imaging in Patients with Nonischemic Dilated Cardiomyopathies[J]. Radiology, 2017, 283(3): 681-691. DOI: 10.1148/radiol.2016161184.
[11]
Giusca S, Steen H, Montenbruck M, et al. Multi-parametric assessment of left ventricular hypertrophy using late gadolinium enhancement, T1 mapping and strain-encoded cardiovascular magnetic resonance[J/OL]. J Cardiovasc Magn Reson, 2021, 23(1): 92 [2022-05-08]. https://pubmed.ncbi.nlm.nih.gov/34247623/. DOI: 10.1186/s12968-021-00775-8.
[12]
Puntmann VO, Peker E, Chandrashekhar Y, et al. T1 Mapping in Characterizing Myocardial Disease[J]. Circ Res, 2016, 119(2): 277-299. DOI: 10.1161/CIRCRESAHA.116.307974.
[13]
Amzulescu MS, De Craene M, Langet H, et al. Myocardial strain imaging: review of general principles, validation, and sources of discrepancies[J]. Eur Heart J Cardiovasc Imaging, 2019, 20(6): 605-619. DOI: 10.1093/ehjci/jez041.
[14]
Li YC, Liu XM, Yang FY, et al. Prognostic value of myocardial extracellular volume fraction evaluation based on cardiac magnetic resonance T1 mapping with T1 long and short in hypertrophic cardiomyopathy[J]. Eur Radiol, 2021, 31(7): 4557-4567. DOI: 10.1007/s00330-020-07650-7.
[15]
Pu CL, Fei JL, Lv SY, et al. Global Circumferential Strain by Cardiac Magnetic Resonance Tissue Tracking Associated With Ventricular Arrhythmias in Hypertrophic Cardiomyopathy Patients[J/OL]. Front Cardiovasc Med, 2021, 8: 670361 [2022-05-08]. https://www.frontiersin.org/articles/10.3389/fcvm.2021.670361/full. DOI: 10.3389/fcvm.2021.670361.
[16]
Liu SL, Li YL, Zhao YM, et al. The Combination of Feature Tracking and Late Gadolinium Enhancement for Identification Between Hypertrophic Cardiomyopathy and Hypertensive Heart Disease[J/OL]. Front Cardiovasc Med, 2022, 9: 865615 [2022-05-11]. https://www.frontiersin.org/articles/10.3389/fcvm.2022.865615/full. DOI: 10.3389/fcvm.2022.865615.
[17]
Li XH, Wang HT, Zhao R, et al. Elevated Extracellular Volume Fraction and Reduced Global Longitudinal Strains in Participants Recovered from COVID-19 without Clinical Cardiac Findings[J/OL]. Radiology, 2021, 299(2): E230-E240 [2022-05-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7808090/. DOI: 10.1148/radiol.2021203998.
[18]
Jiang M, Wang Z, Su X, et al. The Significance of Interstitial Fibrosis on Left Ventricular Function in Hypertensive versus Hypertrophic Cardiomyopathy[J/OL]. Sci Rep, 2018, 8(1): 9995 [2022-05-11]. https://pubmed.ncbi.nlm.nih.gov/29968754/. DOI: 10.1038/s41598-018-27049-1.
[19]
Rodrigues JCL, Erdei T, Dastidar AG, et al. Left ventricular extracellular volume fraction and atrioventricular interaction in hypertension[J]. Eur Radiol, 2019, 29(3): 1574-1585. DOI: 10.1007/s00330-018-5700-z.
[20]
Ye Y, Ji ZP, Zhou WL, et al. Mean Scar Entropy by Late Gadolinium Enhancement Cardiac Magnetic Resonance Is Associated With Ventricular Arrhythmias Events in Hypertrophic Cardiomyopathy[J/OL]. Front Cardiovasc Med, 2021, 8: 758635 [2022-05-11]. https://www.frontiersin.org/articles/10.3389/fcvm.2021.758635/full. DOI: 10.3389/fcvm.2021.758635.
[21]
She JQ, Zhao SH, Chen YY, et al. Detecting Regional Fibrosis in Hypertrophic Cardiomyopathy: The Utility of Myocardial Strain Based on Cardiac Magnetic Resonance[J/OL]. Acad Radiol, 2022 [2022-04-22]. https://www.academicradiology.org/article/S1076-6332(22)00199-4/fulltext. DOI: 10.1016/j.acra.2022.03.022.
[22]
Chung H, Kim Y, Park CH, et al. Effect of sarcomere and mitochondria-related mutations on myocardial fibrosis in patients with hypertrophic cardiomyopathy[J/OL]. J Cardiovasc Magn Reson, 2021, 23(1): 18 [2022-05-11]. https://pubmed.ncbi.nlm.nih.gov/33658040/. DOI: 10.1186/s12968-021-00718-3.
[23]
Li XP, Lai L, Luo R, et al. The Clinical Prognosis of Presence and Location of Late Gadolinium Enhancement by Cardiac Magnetic Resonance Imaging in Patients with Hypertrophic Cardiomyopathy: a Single-Center Cohort Study[J]. J Cardiovasc Transl Res, 2021, 14(5): 1001-1016. DOI: 10.1007/s12265-021-10107-x.
[24]
Liu J, Zhao SH, Yu SQ, et al. Patterns of Replacement Fibrosis in Hypertrophic Cardiomyopathy[J]. Radiology, 2022, 302(2): 298-306. DOI: 10.1148/radiol.2021210914.
[25]
Raman B, Ariga R, Spartera M, et al. Progression of myocardial fibrosis in hypertrophic cardiomyopathy: mechanisms and clinical implications[J]. Eur Heart J Cardiovasc Imaging, 2019, 20(2): 157-167. DOI: 10.1093/ehjci/jey135.
[26]
Liao H, Wang ZQ, Zhao LM, et al. Myocardial contraction fraction predicts mortality for patients with hypertrophic cardiomyopathy[J/OL]. Sci Rep, 2020, 10(1): 17026 [2022-05-28]. https://pubmed.ncbi.nlm.nih.gov/33046745/. DOI: 10.1038/s41598-020-72712-1.
[27]
Abdellatif YA, Addow HA, Elias RR. Myocardial contraction fraction is superior to ejection fraction in predicting functional capacity in patients with heart failure with reduced ejection fraction[J/OL]. J Saudi Heart Assoc, 2022, 34(1): 15-23 [2022-03-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8979221/. DOI: 10.37616/2212-5043.1295.
[28]
Hinojar R, Varma N, Child N, et al. T1 Mapping in Discrimination of Hypertrophic Phenotypes: Hypertensive Heart Disease and Hypertrophic Cardiomyopathy[J/OL]. Circ Cardiovasc Imaging, 2015, 8(12): e003285 [2022-05-28]. https://www.ahajournals.org/doi/10.1161/CIRCIMAGING.115.003285?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed. DOI: 10.1161/CIRCIMAGING.115.003285.
[29]
Vigneault DM, Yang E, Jensen PJ, et al. Left Ventricular Strain Is Abnormal in Preclinical and Overt Hypertrophic Cardiomyopathy: Cardiac MR Feature Tracking[J]. Radiology, 2019, 290(3): 640-648. DOI: 10.1148/radiol.2018180339.
[30]
Palumbo P, Masedu F, De Cataldo C, et al. Real-world clinical validity of cardiac magnetic resonance tissue tracking in primitive hypertrophic cardiomyopathy[J]. Radiol Med, 2021, 126(12): 1532-1543. DOI: 10.1007/s11547-021-01432-x.
[31]
Palmisano V, Cossa S, Esposito A, et al. Obstructive and Nonobstructive Hypertrophic Cardiomyopathy: Differences in Global and Segmental Myocardial Strain by Cardiac Magnetic Resonance Feature Tracking[J]. J Thorac Imaging, 2022, 37(1): 49-57. DOI: 10.1097/RTI.0000000000000612.
[32]
Matthews SD, Rubin J, Cohen LP, et al. Myocardial Contraction Fraction: A Volumetric Measure of Myocardial Shortening Analogous to Strain[J]. J Am Coll Cardiol, 2018, 71(2): 255-256. DOI: 10.1016/j.jacc.2017.09.1157.

PREV Differential diagnostic value of T1 mapping and tissue tracking techniques in diseases associated with left ventricular hypertrophy
NEXT Assessment value of peak diastolic strain rate based on CMR-FT imaging in hypertrophic cardiomyopathy with preserved ejection fraction and its relationship with cardiac troponin T
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn