Share:
Share this content in WeChat
X
Clinical Article
Altered characteristics of brain gray matter volume and structural covariance network in maintenance hemodialysis patients without neuropsychological disorder
ZHANG Die  CHEN Yingying  SHEN Jing  XIE Qing  JING Li  LIN Lin  DU Lina  WU Jianlin 

Cite this article as: Zhang D, Chen YY, Shen J, et al. Altered characteristics of brain gray matter volume and structural covariance network in maintenance hemodialysis patients without neuropsychological disorder[J]. Chin J Magn Reson Imaging, 2022, 13(12): 64-68, 80. DOI:10.12015/issn.1674-8034.2022.12.011.


[Abstract] Objective To explore changes characteristics in the gray matter volume (GMV) and structural covariant network (SCN) in maintenance hemodialysis (MHD) patients without neuropsychological disorder.Materials and Methods The 3D-T1 structural images of 23 MHD patients without neuropsychological disorder and 23 healthy controls (HC) were collected. The GMV of each participant was extracted from T1 structural images, and then the SCN based on group level was calculated according to the GMV of each participant. The group differences in the GMV and SCN related parameters were compared.Results Compared with HC, the patient group showed a significantly lower GMV in the right amygdala (P<0.05, family wise error corrected). This lower GMV in patient group has no significant correlation with scores of cognition, anxiety, and depression. Two parameters at global level including the clustering coefficient (P=0.011) and local efficiency (P=0.003) were significantly higher in the patient group than in HC. To targeted attacks, when removing several specific nodes, the relative sizes of SCN in patient group was significantly higher than that of HC (all P<0.05).Conclusions The combination of VBM and SCN analysis revealed the characteristics of reorganization of brain gray matter structure in MHD patients without neuropsychological disorder, and provide a novel perspective for understanding the mechanism of early brain damage in MHD patients.
[Keywords] end-stage renal disease;maintenance hemodialysis;gray matter volume;structural covariant network;brain structure;brain impairment;magnetic resonance imaging

ZHANG Die1, 2   CHEN Yingying1, 3   SHEN Jing1   XIE Qing1   JING Li1   LIN Lin1   DU Lina1   WU Jianlin1*  

1 Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China

2 Department of Radiology, Shenzhen Third People's Hospital, Shenzhen 518000, China

3 Department of Radiology, Cancer Hospital & Shenzhen Hospital, Shenzhen 518116, China

Wu JL, E-mail: cjr.wujianlin@vip.163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Dalian Science and Technology Innovation Fund (No. 2021JJ12SN38).
Received  2022-08-11
Accepted  2022-11-09
DOI: 10.12015/issn.1674-8034.2022.12.011
Cite this article as: Zhang D, Chen YY, Shen J, et al. Altered characteristics of brain gray matter volume and structural covariance network in maintenance hemodialysis patients without neuropsychological disorder[J]. Chin J Magn Reson Imaging, 2022, 13(12): 64-68, 80. DOI:10.12015/issn.1674-8034.2022.12.011.

[1]
Drew DA, Tighiouart H, Rollins J, et al. Evaluation of Screening Tests for Cognitive Impairment in Patients Receiving Maintenance Hemodialysis[J]. J Am Soc Nephrol, 2020, 31(4): 855-864. DOI: 10.1681/ASN.2019100988.
[2]
Freire de Medeiros C, Diógenes da Silva BR, Costa BG, et al. Cognitive impairment, endothelial biomarkers and mortality in maintenance haemodialysis patients: a prospective cohort study[J]. Nephrol Dial Transplant, 2020, 35(10): 1779-1785. DOI: 10.1093/ndt/gfaa040.
[3]
Fischer MJ, Streja E, Hsiung JT, et al. Depression screening and clinical outcomes among adults initiating maintenance hemodialysis[J]. Clin Kidney J, 2021, 14(12): 2548-2555. DOI: 10.1093/ckj/sfab097.
[4]
Hao W, Tang Q, Huang X, et al. Analysis of the prevalence and influencing factors of depression and anxiety among maintenance dialysis patients during the COVID-19 pandemic[J]. Int Urol Nephrol, 2021, 53(7): 1453-1461. DOI: 10.1007/s11255-021-02791-0.
[5]
Mu J, Liu X, Ma S, et al. The variation of motor-related brain structure and its relation to abnormal motor behaviors in end-stage renal disease patients with restless legs syndrome[J]. Brain Imaging Behav, 2020, 14(1): 42-50. DOI: 10.1007/s11682-018-9968-z.
[6]
Calhoun VD, Sui J. Multimodal fusion of brain imaging data: A key to finding the missing link(s) in complex mental illness[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2016, 1(3): 230-244. DOI: 10.1016/j.bpsc.2015.12.005.
[7]
Chen S, Wang M, Dong H, et al. Internet gaming disorder impacts gray matter structural covariance organization in the default mode network[J]. J Affect Disord, 2021, 288: 23-30. DOI: 10.1016/j.jad.2021.03.077.
[8]
Drew DA, Tighiouart H, Rollins J, et al. Evaluation of Screening Tests for Cognitive Impairment in Patients Receiving Maintenance Hemodialysis[J]. J Am Soc Nephrol, 2020, 31(4): 855-864. DOI: 10.1681/ASN.2019100988.
[9]
Meng Y, Wu HT, Niu JL, et al. Prevalence of depression and anxiety and their predictors among patients undergoing maintenance hemodialysis in Northern China: a cross-sectional study[J]. Ren Fail, 2022, 44(1): 933-944. DOI: 10.1080/0886022X.2022.2077761.
[10]
Ashburner J. A fast diffeomorphic image registration algorithm[J]. Neuroimage, 2007, 38(1): 95-113. DOI: 10.1016/j.neuroimage.2007.07.007.
[11]
Hosseini SM, Hoeft F, Kesler SR. GAT: a graph-theoretical analysis toolbox for analyzing between-group differences in large-scale structural and functional brain networks[J/OL]. PLoS One, 2012, 7(7): e40709 [2022-08-28]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0040709. DOI: 10.1371/journal.pone.0040709.
[12]
Kuang C, Zha Y, Liu C, et al. Altered Topological Properties of Brain Structural Covariance Networks in Patients With Cervical Spondylotic Myelopathy[J/OL]. Front Hum Neurosci, 2020, 14: 364 [2022-08-28]. https://www.frontiersin.org/articles/10.3389/fnhum.2020.00364/full. DOI: 10.3389/fnhum.2020.00364.
[13]
Kaiser M, Hilgetag CC. Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems[J/OL]. PLoS Comput Biol, 2006, 2(7): e95 [2022-08-28]. https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0020095. DOI: 10.1371/journal.pcbi.0020095.
[14]
Zhang LJ, Wen J, Ni L, et al. Predominant gray matter volume loss in patients with end-stage renal disease: a voxel-based morphometry study[J]. Metab Brain Dis, 2013, 28(4): 647-654. DOI: 10.1007/s11011-013-9438-7.
[15]
Li A, Mu J, Huang M, et al. Altered amygdala-related structural covariance and resting-state functional connectivity in end-stage renal disease patients[J]. Metab Brain Dis, 2018, 33(5): 1471-1481. DOI: 10.1007/s11011-018-0254-y.
[16]
Jin M, Wang L, Wang H, et al. Structural and Functional Alterations in Hemodialysis Patients: A Voxel-Based Morphometry and Functional Connectivity Study[J/OL]. Front Hum Neurosci, 2020, 14: 80 [2022-08-28]. https://www.frontiersin.org/articles/10.3389/fnhum.2020.00080/full. DOI: 10.3389/fnhum.2020.00080.
[17]
Zheng LJ, Lin L, Zhong J, et al. Gut dysbiosis-influence on amygdala-based functional activity in patients with end stage renal disease: a preliminary study. Brain Imaging Behav, 2020, 14(6): 2731-2744. DOI: 10.1007/s11682-019-00223-3.
[18]
Janak PH, Tye KM. From circuits to behaviour in the amygdala[J]. Nature, 2015, 517(7534): 284-292. DOI: 10.1038/nature14188.
[19]
Dalton KM, Nacewicz BM, Johnstone T, et al. Gaze fixation and the neural circuitry of face processing in autism[J]. Nat Neurosci, 2005, 8(4): 519-526. DOI: 10.1038/nn1421.
[20]
Salzman CD, Fusi S. Emotion, cognition, and mental state representation in amygdala and prefrontal cortex[J]. Annu Rev Neurosci, 2010, 33: 173-202. DOI: 10.1146/annurev.neuro.051508.135256.
[21]
Achard S, Bullmore E. Efficiency and cost of economical brain functional networks[J/OL]. PLoS Comput Biol, 2007, 3(2): e17 [2022-08-28]. https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0030017. DOI: 10.1371/journal.pcbi.0030017.
[22]
Fulong X, Spruyt K, Chao L, et al. Resting-state brain network topological properties and the correlation with neuropsychological assessment in adolescent narcolepsy[J/OL]. Sleep, 2020, 43(8): zsaa018 [2020-08-12]. https://academic.oup.com/sleep/article/43/8/zsaa018/5734536.
[23]
Park BS, Kim SE, Lee HJ, et al. Alterations in Structural and Functional Connectivities in Patients with End-Stage Renal Disease[J]. J Clin Neurol, 2020, 16(3): 390-400. DOI: 10.3988/jcn.2020.16.3.390.
[24]
Wu B, Li X, Zhang M, et al. Disrupted brain functional networks in patients with end-stage renal disease undergoing hemodialysis[J]. J Neurosci Res, 2020, 98(12): 2566-2578. DOI: 10.1002/jnr.24725.
[25]
Zhu J, Wang C, Liu F, et al. Alterations of Functional and Structural Networks in Schizophrenia Patients with Auditory Verbal Hallucinations[J/OL]. Front Hum Neurosci, 2016, 10: 114 [2022-08-28]. https://www.frontiersin.org/articles/10.3389/fnhum.2016.00114/full. DOI: 10.3389/fnhum.2016.00114.
[26]
Ma X, Jiang G, Li S, et al. Aberrant functional connectome in neurologically asymptomatic patients with end-stage renal disease[J/OL]. PLoS One, 2015, 10(3): e0121085 [2022-08-28]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0121085. DOI: 10.1371/journal.pone.0121085.
[27]
van Bussel FC, Backes WH, van Veenendaal TM, et al. Functional Brain Networks Are Altered in Type 2 Diabetes and Prediabetes: Signs for Compensation of Cognitive Decrements? The Maastricht Study[J]. Diabetes, 2016, 65(8): 2404-2413. DOI: 10.2337/db16-0128.
[28]
Qin C, Liang Y, Tan Xet al. Altered Whole-Brain Functional Topological Organization and Cognitive Function in Type 2 Diabetes Mellitus Patients[J/OL]. Front Neurol, 2019, 10: 599 [2022-08-28]. https://www.frontiersin.org/articles/10.3389/fneur.2019.00599/full. DOI: 10.3389/fneur.2019.00599.
[29]
Liu H, Hu H, Wang H, et al. A Brain Network Constructed on an L1-Norm Regression Model Is More Sensitive in Detecting Small World Network Changes in Early AD[J/OL]. Neural Plast, 2020, 2020: 9436406 [2022-08-28]. https://www.hindawi.com/journals/np/2020/9436406/. DOI: 10.1155/2020/9436406.
[30]
Achard S, Salvador R, Whitcher B, et al. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs[J]. J Neurosci, 2006, 26(1): 63-72. DOI: 10.1523/JNEUROSCI.3874-05.2006.

PREV The evaluation of myocardial toxicity in children with leukemia after chemotherapy by MRI
NEXT Evaluation and prognosis of collateral circulation with modified MRA-MTC-RLMC score in patients with chronic middle cerebral artery occlusion
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn