Share:
Share this content in WeChat
X
Clinical Article
Voxel-based morphological study on the changes of brain structure during radiotherapy of nasopharyngeal carcinoma
CHEN Shuo  ZHOU Yanfei  HU Zongtao  CAO Zong  YANG Lizhuang  LI Hai 

Cite this article as: Chen S, Zhou YF, Hu ZT, et al. Voxel-based morphological study on the changes of brain structure during radiotherapy of nasopharyngeal carcinoma[J]. Chin J Magn Reson Imaging, 2022, 13(12): 81-86. DOI:10.12015/issn.1674-8034.2022.12.014.


[Abstract] Objective To study the changes in cerebral gray matter volume in patients with nasopharyngeal carcinoma (NPC) during radiotherapy and its relationship with radiotherapy dose.Materials and Methods Twenty-one patients with first-episode NPC were selected for MRI scanning before radiotherapy (1-2 days before radiotherapy), during radiotherapy (19-20 days after radiotherapy), and after radiotherapy (1-2 days after radiotherapy). Voxel-based morphometry (VBM) was used to analyze the changes in cerebral gray matter volume during radiotherapy; the correlation between volume change and the dose was analyzed.Results Compared with those before radiotherapy, the volume of the temporal lobe (bilateral fusiform gyrus, right superior temporal gyrus, right middle temporal gyrus, right inferior temporal gyrus), occipital lobe (left lingual gyrus, right rectangular gyrus), frontal lobe (left orbital middle frontal gyrus, left orbital inferior frontal gyrus), marginal lobe (left insular lobe, bilateral anterior cingulate gyrus), and left cerebellar gray matter decreased during radiotherapy in NPC patients (cluster level FWE correction, P<0.001); After radiotherapy, the volume of gray matter in the temporal lobe, occipital lobe, frontal lobe, marginal lobe and cerebellum of NPC patients still decreased significantly, and the volume of gray matter in the right insular lobe, left temporal lobe, bilateral superior frontal gyrus, right orbital inferior frontal gyrus, right cerebellum, and right parahippocampal gyrus also decreased (cluster level FWE correction, P<0.001). The volume change of left cerebellar gray matter was positively correlated with the radiation dose (r=0.503, P=0.020).Conclusions The brain gray matter structure of NPC patients has undergone morphological changes during radiotherapy.
[Keywords] head and neck neoplasms;nasopharyngeal carcinoma;radiation brain injury;morphological changes of cerebral gray matter;voxel-based morphometry;magnetic resonance imaging

CHEN Shuo1   ZHOU Yanfei2, 3   HU Zongtao3   CAO Zong3   YANG Lizhuang2, 3   LI Hai2, 3*  

1 Anhui University of Science and Technology, Huainan 232000, China

2 Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230000, China

3 Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230000, China

Li H, E-mail: hli@cmpt.ac.cn

Conflicts of interest   None.

ACKNOWLEDGMENTS Natural Science Foundation of Anhui Province (No. 2008085MC69); Anhui Province Key Research and Development Program (No. 201904a07020104); Scientific Research Project of Anhui Provincial Health Commission (No. AHWJ2021b150).
Received  2022-08-01
Accepted  2022-11-29
DOI: 10.12015/issn.1674-8034.2022.12.014
Cite this article as: Chen S, Zhou YF, Hu ZT, et al. Voxel-based morphological study on the changes of brain structure during radiotherapy of nasopharyngeal carcinoma[J]. Chin J Magn Reson Imaging, 2022, 13(12): 81-86. DOI:10.12015/issn.1674-8034.2022.12.014.

[1]
Chen YP, Chan ATC, Le QT, et al. Nasopharyngeal carcinoma[J]. Lancet, 2019, 394(10192): 64-80. DOI: 10.1016/S0140-6736(19)30956-0.
[2]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[3]
Nakanishi Y, Wakisaka N, Kondo S, et al. Progression of understanding for the role of Epstein-Barr virus and management of nasopharyngeal carcinoma[J]. Cancer Metastasis Rev, 2017, 36(3): 435-447. DOI: 10.1007/s10555-017-9693-x.
[4]
Makale MT, McDonald CR, Hattangadi-Gluth JA, et al. Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours[J]. Nat Rev Neurol, 2017, 13(1): 52-64. DOI: 10.1038/nrneurol.2016.185.
[5]
Ding ZX, Zhang H, Lv XF, et al. Radiation-induced brain structural and functional abnormalities in presymptomatic phase and outcome prediction[J]. Hum Brain Mapp, 2018, 39(1): 407-427. DOI: 10.1002/hbm.23852.
[6]
Lin JB, Lv XF, Niu MQ, et al. Radiation-induced abnormal cortical thickness in patients with nasopharyngeal carcinoma after radiotherapy[J]. Neuroimage Clin, 2017, 14: 610-621. DOI: 10.1016/j.nicl.2017.02.025.
[7]
Lv XF, Guo Z, Tang LQ, et al. Divergent effects of irradiation on brain cortical morphology in patients with nasopharyngeal carcinoma: one-year follow-up study using structural magnetic resonance imaging[J]. Quant Imaging Med Surg, 2021, 11(6): 2307-2320. DOI: 10.21037/qims-20-662.
[8]
Zhang YM, Chen MN, Yi XP, et al. Cortical surface area rather than cortical thickness potentially differentiates radiation encephalopathy at early stage in patients with nasopharyngeal carcinoma[J/OL]. Front Neurosci, 2018, 12: 599 [2022-07-31]. https://www.frontiersin.org/articles/10.3389/fnins.2018.00599/full. DOI: 10.3389/fnins.2018.00599.
[9]
Shi L, du FL, Sun ZW, et al. Radiation-induced gray matter atrophy in patients with nasopharyngeal carcinoma after intensity modulated radiotherapy: a MRI magnetic resonance imaging voxel-based morphometry study[J]. Quant Imaging Med Surg, 2018, 8(9): 902-909. DOI: 10.21037/qims.2018.10.09.
[10]
Guo Z, Han LJ, Yang YD, et al. Longitudinal brain structural alterations in patients with nasopharyngeal carcinoma early after radiotherapy[J]. Neuroimage Clin, 2018, 19: 252-259. DOI: 10.1016/j.nicl.2018.04.019.
[11]
Lv XF, He HQ, Yang YD, et al. Radiation-induced hippocampal atrophy in patients with nasopharyngeal carcinoma early after radiotherapy: a longitudinal MR-based hippocampal subfield analysis[J]. Brain Imaging Behav, 2019, 13(4): 1160-1171. DOI: 10.1007/s11682-018-9931-z.
[12]
Leng X, Fang P, Lin H, et al. Structural MRI research in patients with nasopharyngeal carcinoma following radiotherapy: a DTI and VBM study[J]. Oncol Lett, 2017, 14(5): 6091-6096. DOI: 10.3892/ol.2017.6968.
[13]
Qiu YW, Guo Z, Han LJ, et al. Network-level dysconnectivity in patients with nasopharyngeal carcinoma (NPC) early post-radiotherapy: longitudinal resting state fMRI study[J]. Brain Imaging Behav, 2018, 12(5): 1279-1289. DOI: 10.1007/s11682-017-9801-0.
[14]
Ma QM, Zeng LL, Qin J, et al. Radiation-induced cerebellar-cerebral functional connectivity alterations in nasopharyngeal carcinoma patients[J]. Neuroreport, 2017, 28(12): 705-711. DOI: 10.1097/WNR.0000000000000813.
[15]
Ren WT, Li YX, Wang K, et al. Cerebral functional abnormalities in patients with nasopharyngeal carcinoma after radiotherapy: an observational magnetic resonance resting-state study[J]. Chin Med J (Engl), 2019, 132(13): 1563-1571. DOI: 10.1097/CM9.0000000000000277.
[16]
Wu G, Luo SS, Balasubramanian PS, et al. Early stage markers of late delayed neurocognitive decline using diffusion kurtosis imaging of temporal lobe in nasopharyngeal carcinoma patients[J]. J Cancer, 2020, 11(20): 6168-6177. DOI: 10.7150/jca.48759.
[17]
Liu J, Wang WJ, Zhou YF, et al. Early-onset micromorphological changes of neuronal fiber bundles during radiotherapy[J]. J Magn Reson Imaging, 2022, 56(1): 210-218. DOI: 10.1002/jmri.28018.
[18]
Nemoto K. Understanding voxel-based morphometry[J]. Brain Nerve, 2017, 69(5): 505-511. DOI: 10.11477/mf.1416200776.
[19]
Jiang J, Du W, Cui YN, et al. Brain gray matter volume and functional brain network in patients with lower back pain: a MRI study[J]. Chin J Magn Reson Imaging, 2021, 12(9): 45-48, 60. DOI: 10.12015/issn.1674-8034.2021.09.010.
[20]
Wang JH, Liu B, Yu DH, et al. Voxel-based gray matter volume study in patients with vestibular migraine[J]. Chin J Magn Reson Imaging, 2021, 12(3): 67-70, 88. DOI: 10.12015/issn.1674-8034.2021.03.015.
[21]
Song XH, Yang JR, Wang LJ. Research progress of functional magnetic resonance imaging in radiation-induced brain injury after radiotherapy of nasopharyngeal carcinoma[J]. Chin J Magn Reson Imaging, 2021, 12(1): 96-99. DOI: 10.12015/issn.1674-8034.2021.01.022.
[22]
Voon NS, Abdul Manan H, Yahya N. Cognitive decline following radiotherapy of head and neck cancer: systematic review and meta-analysis of MRI correlates[J/OL]. Cancers, 2021, 13(24): 6191 [2022-07-31]. https://www.mdpi.com/2072-6694/13/24/6191. DOI: 10.3390/cancers13246191.
[23]
Makale MT, McDonald CR, Hattangadi-Gluth JA, et al. Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours[J]. Nat Rev Neurol, 2017, 13(1): 52-64. DOI: 10.1038/nrneurol.2016.185.
[24]
Bálentová S, Adamkov M. Pathological changes in the central nervous system following exposure to ionizing radiation[J]. Physiol Res, 2020, 69(3): 389-404. DOI: 10.33549/physiolres.934309.
[25]
Yang YD, Lin XS, Li J, et al. Aberrant brain activity at early delay stage post-radiotherapy as a biomarker for predicting neurocognitive dysfunction late-delayed in patients with nasopharyngeal carcinoma[J/OL]. Front Neurol, 2019, 10: 752 [2022-07-31]. https://www.frontiersin.org/articles/10.3389/fneur.2019.00752/full. DOI: 10.3389/fneur.2019.00752.
[26]
Karunamuni R, Bartsch H, White NS, et al. Dose-dependent cortical thinning after partial brain irradiation in high-grade glioma[J]. Int J Radiat Oncol Biol Phys, 2016, 94(2): 297-304. DOI: 10.1016/j.ijrobp.2015.10.026.
[27]
Lv XF, Zheng XL, Zhang WD, et al. Radiation-induced changes in normal-appearing gray matter in patients with nasopharyngeal carcinoma: a magnetic resonance imaging voxel-based morphometry study[J]. Neuroradiology, 2014, 56(5): 423-430. DOI: 10.1007/s00234-014-1338-y.
[28]
Zheng XL, Lü XF, Zhang WD, et al. Voxel-based morphometry MRI study of gray matter volume changes in patients with nasopharyngeal carcinoma following radiation therapy[J]. Chin J CT MRI, 2014, 12(7): 1-3, 13. DOI: 10.3969/j.issn.1672-5131.2014.07.01.
[29]
Gan HK, Bernstein LJ, Brown J, et al. Cognitive functioning after radiotherapy or chemoradiotherapy for head-and-neck cancer[J]. Int J Radiat Oncol Biol Phys, 2011, 81(1): 126-134. DOI: 10.1016/j.ijrobp.2010.05.004.
[30]
Schagen SB, Muller MJ, Boogerd W, et al. Late effects of adjuvant chemotherapy on cognitive function: a follow-up study in breast cancer patients[J]. Ann Oncol, 2002, 13(9): 1387-1397. DOI: 10.1093/annonc/mdf241.
[31]
McDonald BC, Conroy SK, Ahles TA, et al. Gray matter reduction associated with systemic chemotherapy for breast cancer: a prospective MRI study[J]. Breast Cancer Res Treat, 2010, 123(3): 819-828. DOI: 10.1007/s10549-010-1088-4.
[32]
Duan FH, Qiu SJ, Cheng JL. Correlation between changes of whole brain gray matter volume and cognitive function in patients with nasopharyngeal carcinoma in the early stage after radiation therapy[J]. Chin J CT MRI, 2018, 16(6): 33-36. DOI: 10.3969/j.issn.1672-5131.2018.06.011.
[33]
Leng X, Qin CH, Wang HZ, et al. Study on routine MRI-negative gray matter volume after radiotherapy for nasopharyngeal carcinoma[J]. J Pract Med Imaging, 2020, 21(3): 225-229. DOI: 10.16106/j.cnki.cn14-1281/r.2020.03.001.
[34]
Petr J, Platzek I, Seidlitz A, et al. Early and late effects of radiochemotherapy on cerebral blood flow in glioblastoma patients measured with non-invasive perfusion MRI[J]. Radiother Oncol, 2016, 118(1): 24-28. DOI: 10.1016/j.radonc.2015.12.017.
[35]
Wang SL, Wu EX, Qiu DQ, et al. Longitudinal diffusion tensor magnetic resonance imaging study of radiation-induced white matter damage in a rat model[J]. Cancer Res, 2009, 69(3): 1190-1198. DOI: 10.1158/0008-5472.CAN-08-2661.

PREV Efficacy of different machine learning models for contrast-enhanced T1-weighted image radiomics in classifying brain metastases by their primary site of origin
NEXT Value of texture analysis based on R2* map for predicting early recurrence of HCC after hepatectomy
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn