Share:
Share this content in WeChat
X
Clinical Article
Preoperative contrast-enhanced MRI based on radiomics analysis to predict the recurrence of hepatocellular carcinoma after resection
WANG Qing  SHENG Ye  LIU Haifeng  ZHU Zuhui  XING Wei 

Cite this article as: Wang Q, Sheng Y, Liu HF, et al. Preoperative contrast-enhanced MRI based on radiomics analysis to predict the recurrence of hepatocellular carcinoma after resection[J]. Chin J Magn Reson Imaging, 2022, 13(12): 93-99. DOI:10.12015/issn.1674-8034.2022.12.016.


[Abstract] Objective To develop a preoperative MRI model based on radiomics analysis for predicting recurrence of hepatocellular carcinoma (HCC) patients after resection.Materials and Methods This retrospective study included 164 HCC patients (training set: n=115, testing set: n=49) who performed hepatectomy and preoperative gadoxetic acid-enhanced MRI within 2 weeks before resection between August 2015 and August 2020. The univariable and multivariable Cox regression analyses were performed to identify clinical-pathologic-radiologic factors associated with recurrence-free survival (RFS). The radiomics models were constructed using least absolute shrinkage and selection operator Cox regression. The combined nomogram model merging independent factors and radscore was built to predict the RFS of HCC patients after resection and the predictive performance of nomogram model was evaluated with C-index and calibration curves. Kaplan-Meier survival analysis was used to assess the association of the models with RFS.Results The combined nomogram model integrating the tumor margin [HR=2.1, 95% confidence interval (CI): 1.3 to 3.3], necrosis (HR=2.5, 95% CI: 1.5 to 4.3) and the radscore (HR=64.1, 95% CI: 20.6 to 199.9) showed good predictive efficacy for recurrence of HCC patients after resection with a C-index of 0.796 (0.738 to 0.854) in the training set and 0.784 (0.684 to 0.885) in the test set. Calibration curves demonstrated good agreement between model-predicted probabilities and observed outcomes. There was significant difference for recurrence rates between predicted low-risk group and high-risk group in the training set (χ2=52.88, P<0.001) and the test set (χ2=4.14, P=0.042).Conclusions The nomogram model demonstrated good performance for predicting recurrence of HCC patients after resection, thus may help personalized clinical management of HCC patients.
[Keywords] hepatocellular carcinoma;recurrence;magnetic resonance imaging;radiomics;nomogram

WANG Qing1   SHENG Ye2   LIU Haifeng1   ZHU Zuhui1   XING Wei1*  

1 Department of Radiology, the Third Affiliated Hospital of Soochow University (Changzhou First People's Hospital), Changzhou 213200, China

2 Department of Interventional Radiology, the Third Affiliated Hospital of Soochow University (Changzhou First People's Hospital), Changzhou 213200, China

Xing W, E-mail: suzhxingwei@suda.edu.cn

Conflicts of interest   None.

ACKNOWLEDGMENTS Youth Project of Changzhou City Health Commission (No. QN202111).
Received  2022-08-03
Accepted  2022-12-12
DOI: 10.12015/issn.1674-8034.2022.12.016
Cite this article as: Wang Q, Sheng Y, Liu HF, et al. Preoperative contrast-enhanced MRI based on radiomics analysis to predict the recurrence of hepatocellular carcinoma after resection[J]. Chin J Magn Reson Imaging, 2022, 13(12): 93-99. DOI:10.12015/issn.1674-8034.2022.12.016.

[1]
Lee HA, Lee YS, Kim BK, et al. Change in the recurrence pattern and predictors over time after complete cure of hepatocellular carcinoma[J]. Gut Liver, 2021, 15(3): 420-429. DOI: 10.5009/gnl20101.
[2]
Dimitroulis D, Damaskos C, Valsami S, et al. From diagnosis to treatment of hepatocellular carcinoma: An epidemic problem for both developed and developing world[J/OL]. World J Gastroenterol, 2017, 23(29): 5282-5294 [2022-02-08]. https://www.wjgnet.com/1007-9327/full/v23/i29/5282.htm. DOI: 10.3748/wjg.v23.i29.5282.
[3]
Ji GW, Zhu FP, Xu Q, et al. Machine-learning analysis of contrast-enhanced CT radiomics predicts recurrence of hepatocellular carcinoma after resection: a multi-institutional study[J]. EBioMedicine, 2019, 50: 156-165. DOI: 10.1016/j.ebiom.2019.10.057.
[4]
Nardone V, Reginelli A, Grassi R, et al. Delta radiomics: a systematic review[J]. Radiol Med, 2021, 126(12): 1571-1583. DOI: 10.1007/s11547-021-01436-7.
[5]
Chetan MR, Gleeson FV. Radiomics in predicting treatment response in non-small-cell lung cancer: current status, challenges and future perspectives[J]. Eur Radiol, 2021, 31(2): 1049-1058. DOI: 10.1007/s00330-020-07141-9.
[6]
Wakabayashi T, Ouhmich F, Gonzalez-Cabrera C, et al. Radiomics in hepatocellular carcinoma: a quantitative review[J]. Hepatol Int, 2019, 13(5): 546-559. DOI: 10.1007/s12072-019-09973-0.
[7]
Wang X, Wang S, Yin X, et al. MRI-based radiomics distinguish different pathological types of hepatocellular carcinoma[J/OL]. Comput Biol Med, 2022, 141: 105058 [2022-02-08]. https://linkinghub.elsevier.com/retrieve/pii/S0010-4825(21)00852-0. DOI: 10.1016/j.compbiomed.2021.105058.
[8]
Harding-Theobald E, Louissaint J, Maraj B, et al. Systematic review: radiomics for the diagnosis and prognosis of hepatocellular carcinoma[J]. Aliment Pharmacol Ther, 2021, 54(7): 890-901. DOI: 10.1111/apt.16563.
[9]
Fontaine P, Riet FG, Castelli J, et al. Comparison of feature selection in radiomics for the prediction of overall survival after radiotherapy for hepatocellular carcinoma[C]//2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society. Montreal, QC, Canada. IEEE, 2020: 1667-1670. DOI: 10.1109/EMBC44109.2020.9176724.
[10]
Chong HH, Yang L, Sheng RF, et al. Multi-scale and multi-parametric radiomics of gadoxetate disodium-enhanced MRI predicts microvascular invasion and outcome in patients with solitary hepatocellular carcinoma≤5 cm[J]. Eur Radiol, 2021, 31(7): 4824-4838. DOI: 10.1007/s00330-020-07601-2.
[11]
Wang GB, Zhu SC, Li XK. Comparison of values of CT and MRI imaging in the diagnosis of hepatocellular carcinoma and analysis of prognostic factors[J]. Oncol Lett, 2019, 17(1): 1184-1188. DOI: 10.3892/ol.2018.9690.
[12]
Gao WY, Wang WT, Song DJ, et al. A predictive model integrating deep and radiomics features based on gadobenate dimeglumine-enhanced MRI for postoperative early recurrence of hepatocellular carcinoma[J]. Radiol Med, 2022, 127(3): 259-271. DOI: 10.1007/s11547-021-01445-6.
[13]
Chong HH, Gong YD, Pan XP, et al. Peritumoral dilation radiomics of gadoxetate disodium-enhanced MRI excellently predicts early recurrence of hepatocellular carcinoma without macrovascular invasion after hepatectomy[J]. J Hepatocell Carcinoma, 2021, 8: 545-563. DOI: 10.2147/JHC.S309570.
[14]
Zhao Y, Wu JJ, Zhang QH, et al. Radiomics analysis based on multiparametric MRI for predicting early recurrence in hepatocellular carcinoma after partial hepatectomy[J]. J Magn Reson Imaging, 2021, 53(4): 1066-1079. DOI: 10.1002/jmri.27424.
[15]
Zhang L, Hu JM, Hou JY, et al. Radiomics-based model using gadoxetic acid disodium-enhanced MR images: associations with recurrence-free survival of patients with hepatocellular carcinoma treated by surgical resection[J]. Abdom Radiol (NY), 2021, 46(8): 3845-3854. DOI: 10.1007/s00261-021-03034-7.
[16]
Fang SJ, Lai LQ, Zhu JY, et al. A Radiomics Signature-Based Nomogram to Predict the Progression-Free Survival of Patients With Hepatocellular Carcinoma After Transcatheter Arterial Chemoembolization Plus Radiofrequency Ablation[J/OL]. Front Mol Biosci, 2021, 8: 662366 [2022-02-08]. https://www.frontiersin.org/articles/10.3389/fmolb.2021.662366/full. DOI: 10.3389/fmolb.2021.662366.
[17]
Mokrane FZ, Lu L, Vavasseur A, et al. Radiomics machine-learning signature for diagnosis of hepatocellular carcinoma in cirrhotic patients with indeterminate liver nodules[J]. Eur Radiol, 2020, 30(1): 558-570. DOI: 10.1007/s00330-019-06347-w.
[18]
Liu QP, Yang KL, Xu X, et al. Radiomics analysis of pretreatment MRI in predicting tumor response and outcome in hepatocellular carcinoma with transarterial chemoembolization: a two-center collaborative study[J]. Abdom Radiol (NY), 2022, 47(2): 651-663. DOI: 10.1007/s00261-021-03375-3.
[19]
Jin ZC, Chen L, Zhong BY, et al. Machine-learning analysis of contrast-enhanced computed tomography radiomics predicts patients with hepatocellular carcinoma who are unsuitable for initial transarterial chemoembolization monotherapy: A multicenter study[J/OL]. Transl Oncol, 2021, 14(4): 101034 [2022-03-10]. https://linkinghub.elsevier.com/retrieve/pii/S1936-5233(21)00026-7. DOI: 10.1016/j.tranon.2021.101034.
[20]
Shen JX, Zhou Q, Chen ZH, et al. Longitudinal radiomics algorithm of posttreatment computed tomography images for early detecting recurrence of hepatocellular carcinoma after resection or ablation[J/OL]. Transl Oncol, 2021, 14(1): 100866 [2022-02-12]. https://linkinghub.elsevier.com/retrieve/pii/S1936-5233(20)30358-2. DOI: 10.1016/j.tranon.2020.100866.
[21]
Sun YJ, Bai HL, Xia W, et al. Predicting the outcome of transcatheter arterial embolization therapy for unresectable hepatocellular carcinoma based on radiomics of preoperative multiparameter MRI[J]. J Magn Reson Imaging, 2020, 52(4): 1083-1090. DOI: 10.1002/jmri.27143.
[22]
Meng XP, Wang YC, Zhou JY, et al. Comparison of MRI and CT for the prediction of microvascular invasion in solitary hepatocellular carcinoma based on a non-radiomics and radiomics method: which imaging modality is better?[J]. J Magn Reson Imaging, 2021, 54(2): 526-536. DOI: 10.1002/jmri.27575.
[23]
Xu X, Zhang HL, Liu QP, et al. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma[J]. J Hepatol, 2019, 70(6): 1133-1144. DOI: 10.1016/j.jhep.2019.02.023.
[24]
Tian YQ, Hu YB, Peng QQ, et al. The value of Gd-EOB-DTPA-enhanced MRI nomogram model in predicting microvascular invasion of small solitary hepatocellular carcinoma[J]. Chin J Magn Reson Imaging, 2021, 12(10): 57-60, 65. DOI: 10.12015/issn.1674-8034.2021.10.013.
[25]
Chen SL, Feng ST, Wei JW, et al. Pretreatment prediction of immunoscore in hepatocellular cancer: a radiomics-based clinical model based on Gd-EOB-DTPA-enhanced MRI imaging[J]. Eur Radiol, 2019, 29(8): 4177-4187. DOI: 10.1007/s00330-018-5986-x.
[26]
Zhu HB, Zheng ZY, Zhao H, et al. Radiomics-based nomogram using CT imaging for noninvasive preoperative prediction of early recurrence in patients with hepatocellular carcinoma[J]. Diagn Interv Radiol, 2020, 26(5): 411-419. DOI: 10.5152/dir.2020.19623.
[27]
Li PX, Wu L, Li ZH, et al. Spleen Radiomics Signature: A Potential Biomarker for Prediction of Early and Late Recurrences of Hepatocellular Carcinoma After Resection[J/OL]. Front Oncol, 2021, 11: 716849 [2022-06-08]. https://www.frontiersin.org/articles/10.3389/fonc.2021.716849/full. DOI: 10.3389/fonc.2021.716849.
[28]
Liang WJ, Shao JY, Liu WH, et al. Differentiating Hepatic Epithelioid Angiomyolipoma From Hepatocellular Carcinoma and Focal Nodular Hyperplasia via Radiomics Models[J/OL]. Front Oncol, 2020, 10: 564307 [2022-02-08]. https://www.frontiersin.org/articles/10.3389/fonc.2020.564307/full. DOI: 10.3389/fonc.2020.564307.
[29]
Liu F, Liu D, Wang K, et al. Deep learning radiomics based on contrast-enhanced ultrasound might optimize curative treatments for very-early or early-stage hepatocellular carcinoma patients[J]. Liver Cancer, 2020, 9(4): 397-413. DOI: 10.1159/000505694.
[30]
Zhang Z, Jiang HY, Chen J, et al. Hepatocellular carcinoma: radiomics nomogram on gadoxetic acid-enhanced MR imaging for early postoperative recurrence prediction[J/OL]. Cancer Imaging, 2019, 19(1): 22 [2022-06-08]. https://cancerimagingjournal.biomedcentral.com/articles/10.1186/s40644-019-0209-5. DOI: 10.1186/s40644-019-0209-5.
[31]
Song L, Li J, Luo Y. The importance of a nonsmooth tumor margin and incomplete tumor capsule in predicting HCC microvascular invasion on preoperative imaging examination: a systematic review and meta-analysis[J]. Clin Imaging, 2021, 76: 77-82. DOI: 10.1016/j.clinimag.2020.11.057.
[32]
Bijelic L, Rubio ER. Tumor necrosis in hepatocellular carcinoma—unfairly overlooked?[J]. Ann Surg Oncol, 2021, 28(2): 600-601. DOI: 10.1245/s10434-020-09402-9.
[33]
Xie H, Tian ST, Cui L, et al. Adjuvant trans-arterial chemoembolization after hepatectomy significantly improves the prognosis of low-risk patients with R0-stage hepatocellular carcinoma[J]. Cancer Manag Res, 2019, 11: 4065-4073. DOI: 10.2147/CMAR.S195485.
[34]
Ji GW, Wang K, Wu XF, et al. Construction and application value of CT-based radiomics model for predicting recurrence of early-stage hepatocellular carcinoma after resection[J]. Chin J Dig Surg, 2020(2): 204-216. DOI: 10.3760/cma.j.issn.1673-9752.2020.02.014.
[35]
Huo YR, Chan MV, Chan C. Resection plus post-operative adjuvant transcatheter arterial chemoembolization (TACE) compared with resection alone for hepatocellular carcinoma: a systematic review and Meta-analysis[J]. Cardiovasc Intervent Radiol, 2020, 43(4): 572-586. DOI: 10.1007/s00270-019-02392-6.
[36]
Zhao QY, Qi YG, Guo SF, et al. The value of Gd-EOB-DTPA enhanced magnetic resonance imaging for predicting early recurrence of hepatocellular carcinoma after resection[J]. Chin J Magn Reson Imaging, 2021, 12(12): 18-23. DOI: 10.12015/issn.1674-8034.2021.12.004.

PREV Value of texture analysis based on R2* map for predicting early recurrence of HCC after hepatectomy
NEXT Feasibility study of three-dimensional amide proton transfer imaging in differentiating prostate cancer with and without bone metastasis
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn