Share:
Share this content in WeChat
X
Review
Research progress of brain networks in benign childhood epilepsy with centrotemporal spikes
WANG Ji  LI Shiguang  MA Xuejin  JIANG Lin 

Cite this article as: Wang J, Li SG, Ma XJ, et al. Research progress of brain networks in benign childhood epilepsy with centrotemporal spikes[J]. Chin J Magn Reson Imaging, 2022, 13(12): 137-140. DOI:10.12015/issn.1674-8034.2022.12.025.


[Abstract] Benign childhood epilepsy with centrotemporal spikes (BECTS), also known as Rolandic epilepsy, is the most common idiopathic focal epilepsy syndrome in childhood. Its characteristic electroencephalogram shows centrotemporal spikes. BECTS was considered primarily a benign disease, but with advancement in neuropsychology studies, it has been found that cognitive dysfunction is prevalent in BECTS patients. Brain network research based on various neural imaging technologies has confirmed that there are abnormalities in brain structure and functional networks such as default mode network (DMN), language network and sensorimotor network in BECTS, which may be the potential neural mechanism of cognitive impairment. However, we still lack a comprehensive picture of the mechanism, multicenter, multimodal and longitudinal studies should be carried out in the future to further explore. This review will summarize recent findings on the brain network of BECTS.
[Keywords] benign childhood epilepsy with centrotemporal spikes;Rolandic epilepsy;brain network;structural network;functional network;magnetic resonance imaging;functional magnetic resonance imaging;structural magnetic resonance imaging;diffusion tensor imaging;electroencephalography;magnetoencephalography

WANG Ji   LI Shiguang   MA Xuejin   JIANG Lin*  

Department of Radiology, the Third Affiliated Hospital of Zunyi Medical University (the First People's Hospital of Zunyi), Zunyi 563000, China

Jiang L, E-mail: jlinzmc@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 82160328); Guizhou Province Science and Technology Plan Project [No. Qian Ke He Jichu-ZK (2021) Yiban 479, Qian Ke He Jichu-ZK (2022) Yiban 582]; Research and Experimental Development of Zunyi First People's Hospital [No. Yuan Ke Zi (2020) 9].
Received  2022-08-07
Accepted  2022-11-04
DOI: 10.12015/issn.1674-8034.2022.12.025
Cite this article as: Wang J, Li SG, Ma XJ, et al. Research progress of brain networks in benign childhood epilepsy with centrotemporal spikes[J]. Chin J Magn Reson Imaging, 2022, 13(12): 137-140. DOI:10.12015/issn.1674-8034.2022.12.025.

[1]
Sathyanarayana A, Atrache R EL, Jackson M, et al. Nonlinear Analysis of Visually Normal EEGs to Differentiate Benign Childhood Epilepsy with Centrotemporal Spikes (BECTS)[J/OL]. Sci Rep, 2020, 10(1): 8419 [2022-10-28]. https://pubmed.ncbi.nlm.nih.gov/32439999/. DOI: 10.1038/s41598-020-65112-y.
[2]
Wu Y, Fang F, Li K, et al. Functional connectivity differences in speech production networks in Chinese children with Rolandic epilepsy[J/OL]. Epilepsy Behav, 2022, 135: 108819 [2022-10-28]. https://pubmed.ncbi.nlm.nih.gov/35835716/. DOI: 10.1016/j.yebeh.2022.108819.
[3]
Specchio N, Wirrell EC, Scheffer IE, et al. International League Against Epilepsy classification and definition of epilepsy syndromes with onset in childhood: Position paper by the ILAE Task Force on Nosology and Definitions[J]. Epilepsia, 2022, 63(6): 1398-1442. DOI: 10.1111/epi.17241.
[4]
Scheffer IE, Berkovic S, Capovilla G, et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology[J]. Epilepsia, 2017, 58(4): 512-521. DOI: 10.1111/epi.13709.
[5]
Dryżałowski P, JÓŹWIAK S, Franckiewicz M, et al. Benign epilepsy with centrotemporal spikes-Current concepts of diagnosis and treatment[J]. Neurol Neurochir Pol, 2018, 52(6): 677-689. DOI: 10.1016/j.pjnns.2018.08.010.
[6]
Wickens S, Bowden SC, D'souza W. Cognitive functioning in children with self-limited epilepsy with centrotemporal spikes: A systematic review and meta-analysis[J]. Epilepsia, 2017, 58(10): 1673-1685. DOI: 10.1111/epi.13865.
[7]
Teixeira JM, Santos ME, Oom P. Oral language in children with benign childhood epilepsy with centrotemporal spikes[J/OL]. Epilepsy Behav, 2020, 111: 107328 [2022-10-28]. https://pubmed.ncbi.nlm.nih.gov/33027869/. DOI: 10.1016/j.yebeh.2020.107328.
[8]
Liang X, Wang JH, He Y. Human connectome:Structural and functional brain networks[J]. Chin Sci Bull, 2010, 55(16): 1565-1583. DOI: 10.1360/972009-2150.
[9]
Wang J, Kong LY, Lei BY, et al. Advances in research on complex brain networks in depressio[J]. Chinese Journal of Medical Physics, 2020, 37(6): 780-785. DOI: 10.3969/j.issn.1005-202X.2020.06.023.
[10]
Nigro S, Filardi M, Tafuri B, et al. The Role of Graph Theory in Evaluating Brain Network Alterations in Frontotemporal Dementia[J/OL]. Front Neurol, 2022, 13: 910054 [2022-10-28]. https://pubmed.ncbi.nlm.nih.gov/35837233/. DOI: 10.3389/fneur.2022.910054.
[11]
Zhang Q, Wang B. Progress in the study of functional magnetic resonance imaging (fMRI) brain networks in the depression[J]. Chin J Magn Reson Imaging, 2018, 9(4): 289-293. DOI: 10.12015/issn.1674-8034.2018.04.010.
[12]
Wein S, Deco G, Tomé AM, et al. Brain Connectivity Studies on Structure-Function Relationships: A Short Survey with an Emphasis on Machine Learning[J/OL]. Comput Intell Neurosci, 2021, 2021: 5573740 [2022-10-28]. https://pubmed.ncbi.nlm.nih.gov/34135951/. DOI: 10.1155/2021/5573740.
[13]
Pegg EJ, Taylor JR, Laiou P, et al. Interictal electroencephalographic functional network topology in drug-resistant and well-controlled idiopathic generalized epilepsy[J]. Epilepsia, 2021, 62(2): 492-503. DOI: 10.1111/epi.16811.
[14]
Yang YQ, Mou LX, Qu L, et al. Advances in research on brain networks in psychogenic erectile dysfunction[J]. Chin J Magn Reson Imaging, 2022, 13(2): 116-119. DOI: 10.12015/issn.1674-8034.2022.02.028.
[15]
Xiao F, Lei D, An D, et al. Functional brain connectome and sensorimotor networks in rolandic epilepsy[J]. Epilepsy Res, 2015, 113: 113-125. DOI: 10.1016/j.eplepsyres.2015.03.015.
[16]
Ji GJ, Yu Y, Miao HH, et al. Decreased Network Efficiency in Benign Epilepsy with Centrotemporal Spikes[J]. Radiology, 2017, 283(1): 186-194. DOI: 10.1148/radiol.2016160422.
[17]
Choi HS, Chung YG, Choi SA, et al. Electroencephalographic Resting-State Functional Connectivity of Benign Epilepsy with Centrotemporal Spikes[J]. J Clin Neurol, 2019, 15(2): 211-220. DOI: 10.3988/jcn.2019.15.2.211.
[18]
Wang P, Li Y, Sun Y, et al. Altered functional connectivity in newly diagnosed benign epilepsy with unilateral or bilateral centrotemporal spikes: A multi-frequency MEG study[J/OL]. Epilepsy Behav, 2021, 124: 108276 [2022-10-28]. https://pubmed.ncbi.nlm.nih.gov/34547687/. DOI: 10.1016/j.yebeh.2021.108276.
[19]
Li Y, Sun Y, Zhang T, et al. The relationship between epilepsy and cognitive function in benign childhood epilepsy with centrotemporal spikes[J/OL]. Brain Behav, 2020, 10(12): e01854 [2022-10-28]. https://pubmed.ncbi.nlm.nih.gov/32959999/. DOI: 10.1002/brb3.1854.
[20]
Ofer I, Jacobs J, Jaiser N, et al. Cognitive and behavioral comorbidities in Rolandic epilepsy and their relation with default mode network's functional connectivity and organization[J]. Epilepsy Behav, 2018, 78: 179-186. DOI: 10.1016/j.yebeh.2017.10.013.
[21]
Smallwood J, Bernhardt BC, Leech R, et al. The default mode network in cognition: a topographical perspective[J]. Nat Rev Neurosci, 2021, 22(8): 503-513. DOI: 10.1038/s41583-021-00474-4.
[22]
Li ZW, Dang G, Han J, et al. Advances on Brain Networks in Post-stroke Depression[J]. Chin J Stroke, 2020, 15(5): 477-483. DOI: 10.3969/j.issn.1673-5765.2020.05.004.
[23]
Oser N, Hubacher M, Specht K, et al. Default mode network alterations during language task performance in children with benign epilepsy with centrotemporal spikes (BECTS)[J]. Epilepsy Behav, 2014, 33: 12-17. DOI: 10.1016/j.yebeh.2014.01.008.
[24]
Li R, Ji GJ, Yu Y, et al. Epileptic Discharge Related Functional Connectivity Within and Between Networks in Benign Epilepsy with Centrotemporal Spikes[J/OL]. Int J Neural Syst, 2017, 27(7): 1750018 [2022-10-28]. https://pubmed.ncbi.nlm.nih.gov/28359223/. DOI: 10.1142/S0129065717500186.
[25]
Li R, Wang L, Chen H, et al. Abnormal dynamics of functional connectivity density in children with benign epilepsy with centrotemporal spikes[J]. Brain Imaging Behav, 2019, 13(4): 985-994. DOI: 10.1007/s11682-018-9914-0.
[26]
Tan G, Xiao F, Chen S, et al. Frequency-specific alterations in the amplitude and synchronization of resting-state spontaneous low-frequency oscillations in benign childhood epilepsy with centrotemporal spikes[J]. Epilepsy Res, 2018, 145: 178-184. DOI: 10.1016/j.eplepsyres.2018.07.007.
[27]
Jiang S, Luo C, Huang Y, et al. Altered Static and Dynamic Spontaneous Neural Activity in Drug-Naïve and Drug-Receiving Benign Childhood Epilepsy With Centrotemporal Spikes[J/OL]. Front Hum Neurosci, 2020, 14: 361 [2022-10-28]. https://pubmed.ncbi.nlm.nih.gov/33005141/. DOI: 10.3389/fnhum.2020.00361.
[28]
Luo C, Zhang Y, Cao W, et al. Altered Structural and Functional Feature of Striato-Cortical Circuit in Benign Epilepsy with Centrotemporal Spikes[J/OL]. Int J Neural Syst, 2015, 25(6): 1550027 [2022-10-28]. https://pubmed.ncbi.nlm.nih.gov/26126612/. DOI: 10.1142/S0129065715500276.
[29]
Xiao F, Li L, An D, et al. Altered attention networks in benign childhood epilepsy with centrotemporal spikes (BECTS): A resting-state fMRI study[J]. Epilepsy Behav, 2015, 45: 234-241. DOI: 10.1016/j.yebeh.2015.01.016.
[30]
Li R, Liao W, Yu Y, et al. Differential patterns of dynamic functional connectivity variability of striato-cortical circuitry in children with benign epilepsy with centrotemporal spikes[J]. Hum Brain Mapp, 2018, 39(3): 1207-1217. DOI: 10.1002/hbm.23910.
[31]
Azarmi F, Miri Ashtiani SN, Shalbaf A, et al. Granger causality analysis in combination with directed network measures for classification of MS patients and healthy controls using task-related fMRI[J/OL]. Comput Biol Med, 2019, 115: 103495 [2022-10-28]. https://pubmed.ncbi.nlm.nih.gov/31698238/. DOI: 10.1016/j.compbiomed.2019.103495.
[32]
Wu Y, Ji GJ, Zang YF , et al. Local Activity and Causal Connectivity in Children with Benign Epilepsy with Centrotemporal Spikes[J/OL]. PLoS One, 2015, 10(7): e0134361 [2022-10-28]. https://pubmed.ncbi.nlm.nih.gov/26225427/. DOI: 10.1371/journal.pone.0134361.
[33]
Chen S, Fang J, An D, et al. The focal alteration and causal connectivity in children with new-onset benign epilepsy with centrotemporal spikes[J/OL]. Sci Rep, 2018, 8(1): 5689 [2022-10-28]. https://pubmed.ncbi.nlm.nih.gov/29632387/. DOI: 10.1038/s41598-018-23336-z.
[34]
Bear JJ, Chapman KE, Tregellas JR. The epileptic network and cognition: What functional connectivity is teaching us about the childhood epilepsies[J]. Epilepsia, 2019, 60(8): 1491-1507. DOI: 10.1111/epi.16098.
[35]
Vannest J, Maloney TC, Tenney JR, et al. Changes in functional organization and functional connectivity during story listening in children with benign childhood epilepsy with centro-temporal spikes[J]. Brain Lang, 2019, 193: 10-17. DOI: 10.1016/j.bandl.2017.01.009.
[36]
Wu Y, Ji GJ, Li K, et al. Interhemispheric Connectivity in Drug-Naive Benign Childhood Epilepsy With Centrotemporal Spikes: Combining Function and Diffusion MRI[J/OL]. Medicine, 2015, 94(37): e1550 [2022-10-28]. https://pubmed.ncbi.nlm.nih.gov/26376406/. DOI: 10.1097/MD.0000000000001550.
[37]
Kim HJ, Lee JH, Park CH, et al. Role of Language-Related Functional Connectivity in Patients with Benign Childhood Epilepsy with Centrotemporal Spikes[J]. J Clin Neurol, 2018, 14(1): 48-57. DOI: 10.3988/jcn.2018.14.1.48.
[38]
Fang J, Chen S, Luo C, et al. Altered language network in benign childhood epilepsy patients with spikes from non-dominant side: A resting-state fMRI study[J]. Epilepsy Res, 2017, 136: 109-114. DOI: 10.1016/j.eplepsyres.2017.07.020.
[39]
Mcginnity CJ, Smith AB, Yaakub SN, et al. Decreased functional connectivity within a language subnetwork in benign epilepsy with centrotemporal spikes[J]. Epilepsia Open, 2017, 2(2): 214-225. DOI: 10.1002/epi4.12051.
[40]
Xiao F, An D, Lei D, et al. Real-time effects of centrotemporal spikes on cognition in rolandic epilepsy: An EEG-fMRI study[J]. Neurology, 2016, 86(6): 544-551. DOI: 10.1212/WNL.0000000000002358.
[41]
Besseling RM, Overvliet GM, Jansen JF, et al. Aberrant functional connectivity between motor and language networks in rolandic epilepsy[J]. Epilepsy Res, 2013, 107(3): 253-262. DOI: 10.1016/j.eplepsyres.2013.10.008.
[42]
Cao W, Zhang Y, Hou C, et al. Abnormal asymmetry in benign epilepsy with unilateral and bilateral centrotemporal spikes: A combined fMRI and DTI study[J]. Epilepsy Res, 2017, 135: 56-63. DOI: 10.1016/j.eplepsyres.2017.06.004.
[43]
Kwon H, Chinappen DM, Huang JF, et al. Transient, developmental functional and structural connectivity abnormalities in the thalamocortical motor network in Rolandic epilepsy[J/OL]. Neuroimage Clin, 2022, 35: 103102 [2022-10-28]. https://pubmed.ncbi.nlm.nih.gov/35777251/. DOI: 10.1016/j.nicl.2022.103102.
[44]
Aricò M, Arigliani E, Giannotti F, et al. ADHD and ADHD-related neural networks in benign epilepsy with centrotemporal spikes: A systematic review[J/OL]. Epilepsy Behav, 2020, 112: 107448 [2022-10-28]. https://pubmed.ncbi.nlm.nih.gov/32916583/. DOI: 10.1016/j.yebeh.2020.107448.
[45]
Fu C, Aisikaer A, Chen Z, et al. Different Functional Network Connectivity Patterns in Epilepsy: A Rest-State fMRI Study on Mesial Temporal Lobe Epilepsy and Benign Epilepsy With Centrotemporal Spike[J/OL]. Front Neurol, 2021, 12: 668856 [2022-10-28]. https://pubmed.ncbi.nlm.nih.gov/34122313/. DOI: 10.3389/fneur.2021.668856.
[46]
He W, Liu H, Liu Z, et al. Electrical status epilepticus in sleep affects intrinsically connected networks in patients with benign childhood epilepsy with centrotemporal spikes[J/OL]. Epilepsy Behav, 2020, 106: 107032 [2022-10-28]. https://pubmed.ncbi.nlm.nih.gov/32220803/. DOI: 10.1016/j.yebeh.2020.107032.
[47]
Dai XJ, Liu H, Yang Y, et al. Brain network excitatory/inhibitory imbalance is a biomarker for drug-naive Rolandic epilepsy: A radiomics strategy[J]. Epilepsia, 2021, 62(10): 2426-2438. DOI: 10.1111/epi.17011.
[48]
Jiang L, Zhang T, Lv F, et al. Structural Covariance Network of Cortical Gyrification in Benign Childhood Epilepsy with Centrotemporal Spikes[J/OL]. Front Neurol, 2018, 9: 10 [2022-10-28]. https://pubmed.ncbi.nlm.nih.gov/29467710/. DOI: 10.3389/fneur.2018.00010.
[49]
Garcia-Ramos C, Dabbs K, Lin JJ, et al. Network analysis of prospective brain development in youth with benign epilepsy with centrotemporal spikes and its relationship to cognition[J]. Epilepsia, 2019, 60(9): 1838-1848. DOI: 10.1111/epi.16290.
[50]
Xu Y, Xu Q, Zhang Q, et al. Influence of epileptogenic region on brain structural changes in Rolandic epilepsy[J]. Brain Imaging Behav, 2022, 16(1): 424-434. DOI: 10.1007/s11682-021-00517-5.
[51]
Besseling RM, Jansen JF, Overvliet GM , et al. Delayed convergence between brain network structure and function in rolandic epilepsy[J/OL]. Front Hum Neurosci, 2014, 8: 704 [2022-10-28]. https://pubmed.ncbi.nlm.nih.gov/25249968/. DOI: 10.3389/fnhum.2014.00704.

PREV MRI and CT diagnosis of adrenocortical oncocytoma: One case report
NEXT Research progress of MRI in major depressive disorder with insomnia
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn