Share:
Share this content in WeChat
X
Review
Research progress of MRI in major depressive disorder with insomnia
FENG Jiejie  MA Laiyang  XU Lili  ZHANG Jing 

Cite this article as: Feng JJ, Ma LY, Xu LL, et al. Research progress of MRI in major depressive disorder with insomnia[J]. Chin J Magn Reson Imaging, 2022, 13(12): 141-145. DOI:10.12015/issn.1674-8034.2022.12.026.


[Abstract] Major depressive disorder (MDD) is one of the most common severe psychiatric disorders and is also an important cause of disability. Insomnia is not only a common symptom of MDD, but also the key factor in its recurrence, disability and suicide. With the development of neuroimaging and MRI technology, it is possible to elucidate the neuropathological mechanisms and associations of MDD with insomnia. In this paper, several advanced MRI techniques are used to review the current research progress of MDD with insomnia from the aspects of structure, function, metabolism and brain functional network, in order to provide imaging evidence for the interpretation of the pathological mechanism and optimize clinical decision making, and provide some new ideas for future researches.
[Keywords] major depressive disorder;insomnia;brain function;functional magnetic resonance imaging;resting-state functional magnetic resonance imaging;diffusion tensor imaging;magnetic resonance spectrum;magnetic resonance imaging

FENG Jiejie1, 2   MA Laiyang1, 2   XU Lili1, 2   ZHANG Jing1*  

1 Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China

2 The Second Clinical Medicine College of Lanzhou University, Lanzhou 730000, China

Zhang J, E-mail: lztong2001@163.com

Conflicts of interest   None.

Received  2022-05-31
Accepted  2022-10-09
DOI: 10.12015/issn.1674-8034.2022.12.026
Cite this article as: Feng JJ, Ma LY, Xu LL, et al. Research progress of MRI in major depressive disorder with insomnia[J]. Chin J Magn Reson Imaging, 2022, 13(12): 141-145. DOI:10.12015/issn.1674-8034.2022.12.026.

[1]
Filatova EV, Shadrina MI, Slominsky PA. Major Depression: One Brain, One Disease, One Set of Intertwined Processes[J/OL]. Cells, 2021, 10(6) [2022-05-30]. https://pubmed.ncbi.nlm.nih.gov/34064233/. DOI: 10.3390/cells10061283.
[2]
Rotenstein LS, Ramos MA, Torre M, et al. Prevalence of Depression, Depressive Symptoms, and Suicidal Ideation Among Medical Students: A Systematic Review and Meta-Analysis[J]. JAMA, 2016, 316(21): 2214-2236. DOI: 10.1001/jama.2016.17324.
[3]
Fang X, Zhang C, Wu Z, et al. The association between somatic symptoms and suicidal ideation in Chinese first-episode major depressive disorder[J]. J Affect Disord, 2019, 245: 17-21. DOI: 10.1016/j.jad.2018.10.110.
[4]
Morin CM, Drake CL, Harvey AG, et al. Insomnia disorder[J/OL]. Nat Rev Dis Primers, 2015, 1 [2022-05-30]. https://pubmed.ncbi.nlm.nih.gov/27189779/. DOI: 10.1038/nrdp.2015.26.
[5]
Geoffroy PA, Hoertel N, Etain B, et al. Insomnia and hypersomnia in major depressive episode: Prevalence, sociodemographic characteristics and psychiatric comorbidity in a population-based study[J]. J Affect Disord, 2018, 226: 132-141. DOI: 10.1016/j.jad.2017.09.032.
[6]
Hammerschlag AR, Stringer S, de Leeuw CA, et al. Genome-wide association analysis of insomnia complaints identifies risk genes and genetic overlap with psychiatric and metabolic traits[J]. Nat Genet, 2017, 49(11): 1584-1592. DOI: 10.1038/ng.3888.
[7]
Jansen PR, Watanabe K, Stringer S, et al. Genome-wide analysis of insomnia in 1,331,010 individuals identifies new risk loci and functional pathways[J]. Nat Genet, 2019, 51(3): 394-403. DOI: 10.1038/s41588-018-0333-3.
[8]
Cai L, Bao Y, Fu X, et al. Causal links between major depressive disorder and insomnia: A Mendelian randomisation study[J/OL]. Gene, 2021, 768 [2022-05-30]. https://pubmed.ncbi.nlm.nih.gov/33122081/. DOI: 10.1016/j.gene.2020.145271.
[9]
Blanken TF, Borsboom D, Penninx BW, et al. Network outcome analysis identifies difficulty initiating sleep as a primary target for prevention of depression: a 6-year prospective study[J/OL]. Sleep, 2020, 43(5) [2022-05-30]. https://pubmed.ncbi.nlm.nih.gov/31789381/. DOI: 10.1093/sleep/zsz288.
[10]
Norred MA, Haselden LC, Sahlem GL, et al. TMS and CBT-I for comorbid depression and insomnia. Exploring feasibility and tolerability of transcranial magnetic stimulation (TMS) and cognitive behavioral therapy for insomnia (CBT-I) for comorbid major depressive disorder and insomnia during the COVID-19 pandemic[J]. Brain Stimul, 2021, 14(6): 1508-1510. DOI: 10.1016/j.brs.2021.09.007.
[11]
Mi WF, Tabarak S, Wang L, et al. Effects of agomelatine and mirtazapine on sleep disturbances in major depressive disorder: evidence from polysomnographic and resting-state functional connectivity analyses[J/OL]. Sleep, 2020, 43(11) [2022-05-30]. https://pubmed.ncbi.nlm.nih.gov/32406918/. DOI: 10.1093/sleep/zsaa092.
[12]
Kambeitz J, Cabral C, Sacchet MD, et al. Detecting Neuroimaging Biomarkers for Depression: A Meta-analysis of Multivariate Pattern Recognition Studies[J]. Biol Psychiatry, 2017, 82(5): 330-338. DOI: 10.1016/j.biopsych.2016.10.028.
[13]
Khazaie H, Veronese M, Noori K, et al. Functional reorganization in obstructive sleep apnoea and insomnia: A systematic review of the resting-state fMRI[J]. Neurosci Biobehav Rev, 2017, 77: 219-231. DOI: 10.1016/j.neubiorev.2017.03.013.
[14]
Ashburner J, Friston KJ. Voxel-based morphometry--the methods[J]. Neuroimage, 2000, 11(6Pt 1): 805-821. DOI: 10.1006/nimg.2000.0582.
[15]
Yu S, Shen Z, Lai R, et al. The Orbitofrontal Cortex Gray Matter Is Associated With the Interaction Between Insomnia and Depression[J/OL]. Front Psychiatry, 2018, 9 [2022-05-30]. https://pubmed.ncbi.nlm.nih.gov/30564152/. DOI: 10.3389/fpsyt.2018.00651.
[16]
Bechara A, Damasio H, Damasio AR. Emotion, decision making and the orbitofrontal cortex[J]. Cereb Cortex, 2000, 10(3): 295-307. DOI: 10.1093/cercor/10.3.295.
[17]
Leerssen J, Blanken TF, Pozzi E, et al. Brain structural correlates of insomnia severity in 1053 individuals with major depressive disorder: results from the ENIGMA MDD Working Group[J/OL]. Transl Psychiatry, 2020, 10(1) [2022-05-30]. https://pubmed.ncbi.nlm.nih.gov/33293520/. DOI: 10.1038/s41398-020-01109-5.
[18]
Vassilopoulou K, Papathanasiou M, Michopoulos I, et al. A magnetic resonance imaging study of hippocampal, amygdala and subgenual prefrontal cortex volumes in major depression subtypes: melancholic versus psychotic depression[J]. J Affect Disord, 2013, 146(2): 197-204. DOI: 10.1016/j.jad.2012.09.003.
[19]
Wang Y, Liu Z, Cai L, et al. A Critical Role of Basolateral Amygdala-to-Nucleus Accumbens Projection in Sleep Regulation of Reward Seeking[J]. Biol Psychiatry, 2020, 87(11): 954-966. DOI: 10.1016/j.biopsych.2019.10.027.
[20]
Mark CI, Mazerolle EL, Chen JJ. Metabolic and vascular origins of the BOLD effect: Implications for imaging pathology and resting-state brain function[J]. J Magn Reson Imaging, 2015, 42(2): 231-246. DOI: 10.1002/jmri.24786.
[21]
Chen K, Azeez A, Chen DY, et al. Resting-State Functional Connectivity: Signal Origins and Analytic Methods[J]. Neuroimaging Clin N Am, 2020, 30(1): 15-23. DOI: 10.1016/j.nic.2019.09.012.
[22]
Liu CH, Guo J, Lu SL, et al. Increased Salience Network Activity in Patients With Insomnia Complaints in Major Depressive Disorder[J/OL]. Front Psychiatry, 2018, 9 [2022-05-30]. https://pubmed.ncbi.nlm.nih.gov/29615938/. DOI: 10.3389/fpsyt.2018.00093.
[23]
Liang S, Xue K, Wang W, et al. Altered brain function and clinical features in patients with first-episode, drug naïve major depressive disorder: A resting-state fMRI study[J/OL]. Psychiatry Res Neuroimaging, 2020, 303 [2022-05-30]. https://pubmed.ncbi.nlm.nih.gov/32652482/. DOI: 10.1016/j.pscychresns.2020.111134.
[24]
Lee J, Pavuluri MN, Kim JH, et al. Resting-state functional connectivity in medication-naïve adolescents with major depressive disorder[J]. Psychiatry Res Neuroimaging, 2019, 288: 37-43. DOI: 10.1016/j.pscychresns.2019.04.008.
[25]
Gong L, Xu R, Liu D, et al. Abnormal functional connectivity density in patients with major depressive disorder with comorbid insomnia[J]. J Affect Disord, 2020, 266: 417-423. DOI: 10.1016/j.jad.2020.01.088.
[26]
Du X, Zhan L, Chen G, et al. Differential activation of the medial temporal lobe during item and associative memory across time[J/OL]. Neuropsychologia, 2019, 135 [2022-05-30]. https://pubmed.ncbi.nlm.nih.gov/31698009/. DOI: 10.1016/j.neuropsychologia.2019.107252.
[27]
Denys K, Vanduffel W, Fize D, et al. The processing of visual shape in the cerebral cortex of human and nonhuman primates: a functional magnetic resonance imaging study[J]. J Neurosci, 2004, 24(10): 2551-2565. DOI: 10.1523/JNEUROSCI.3569-03.2004.
[28]
Yan CQ, Liu CZ, Wang X, et al. Abnormal Functional Connectivity of Anterior Cingulate Cortex in Patients With Primary Insomnia: A Resting-State Functional Magnetic Resonance Imaging Study[J/OL]. Front Aging Neurosci, 2018, 10 [2022-05-30]. https://pubmed.ncbi.nlm.nih.gov/29922151/. DOI: 10.3389/fnagi.2018.00167.
[29]
Goldstone A, Javitz HS, Claudatos SA, et al. Sleep Disturbance Predicts Depression Symptoms in Early Adolescence: Initial Findings From the Adolescent Brain Cognitive Development Study[J]. J Adolesc Health, 2020, 66(5): 567-574. DOI: 10.1016/j.jadohealth.2019.12.005
[30]
Javaheripour N, Shahdipour N, Noori K, et al. Functional brain alterations in acute sleep deprivation: An activation likelihood estimation meta-analysis[J]. Sleep Med Rev, 2019, 46: 64-73. DOI: 10.1016/j.smrv.2019.03.008.
[31]
Casement MD, Keenan KE, Hipwell AE, et al. Neural Reward Processing Mediates the Relationship between Insomnia Symptoms and Depression in Adolescence[J]. Sleep, 2016, 39(2): 439-447. DOI: 10.5665/sleep.5460.
[32]
Uddin LQ, Nomi JS, Hébert-Seropian B, et al. Structure and Function of the Human Insula[J]. J Clin Neurophysiol, 2017, 34(4): 300-306. DOI: 10.1097/WNP.0000000000000377.
[33]
Li H, Chen Z, Gong Q, et al. Voxel-wise meta-analysis of task-related brain activation abnormalities in major depressive disorder with suicide behavior[J]. Brain Imaging Behav, 2020, 14(4): 1298-1308. DOI: 10.1007/s11682-019-00045-3.
[34]
Lope-Piedrafita S. Diffusion Tensor Imaging (DTI)[J]. Methods Mol Biol, 2018, 1718: 103-116. DOI: 10.1007/978-1-4939-7531-07.
[35]
Porcu M, Cocco L, Puig J, et al. Global Fractional Anisotropy: Effect on Resting-state Neural Activity and Brain Networking in Healthy Participants[J]. Neuroscience, 2021, 472: 103-115. DOI: 10.1016/j.neuroscience.2021.07.021.
[36]
Pandi-Perumal SR, Monti JM, Burman D, et al. Clarifying the role of sleep in depression: A narrative review[J/OL]. Psychiatry Res, 2020, 291 [2022-05-30]. https://pubmed.ncbi.nlm.nih.gov/32593854/. DOI: 10.1016/j.psychres.2020.113239.
[37]
Chen L, Shao Z, Xu Y, et al. Disrupted frontostriatal connectivity in primary insomnia: a DTI study[J]. Brain Imaging Behav, 2021, 15(5): 2524-2531. DOI: 10.1007/s11682-021-00454-3.
[38]
Sanjari Moghaddam H, Mohammadi E, Dolatshahi M, et al. White matter microstructural abnormalities in primary insomnia: A systematic review of diffusion tensor imaging studies[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2021, 105 [2022-05-30]. https://pubmed.ncbi.nlm.nih.gov/33049323/. DOI: 10.1016/j.pnpbp.2020.110132.
[39]
Rostampour M, Gharaylou Z, Rostampour N, et al. Asymmetric alterations of white matter integrity in patients with insomnia disorder[J]. Brain Imaging Behav, 2022, 16(1): 389-396. DOI: 10.1007/s11682-021-00512-w.
[40]
van Velzen LS, Kelly S, Isaev D, et al. White matter disturbances in major depressive disorder: a coordinated analysis across 20 international cohorts in the ENIGMA MDD working group[J]. Mol Psychiatry, 2020, 25(7): 1511-1525. DOI: 10.1038/s41380-019-0477-2.
[41]
Tae WS, Ham BJ, Pyun SB, et al. Current Clinical Applications of Diffusion-Tensor Imaging in Neurological Disorders[J]. J Clin Neurol, 2018, 14(2): 129-140. DOI: 10.3988/jcn.2018.14.2.129.
[42]
Chen G, Guo Y, Zhu H, et al. Intrinsic disruption of white matter microarchitecture in first-episode, drug-naive major depressive disorder: A voxel-based meta-analysis of diffusion tensor imaging[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2017, 76: 179-187. DOI: 10.1016/j.pnpbp.2017.03.011.
[43]
Jiang J, Zhao YJ, Hu XY, et al. Microstructural brain abnormalities in medication-free patients with major depressive disorder: a systematic review and meta-analysis of diffusion tensor imaging[J]. J Psychiatry Neurosci, 2017, 42(3): 150-163. DOI: 10.1503/jpn.150341.
[44]
Liang S, Wang Q, Kong X, et al. White Matter Abnormalities in Major Depression Biotypes Identified by Diffusion Tensor Imaging[J]. Neurosci Bull, 2019, 35(5): 867-876. DOI: 10.1007/s12264-019-00381-w.
[45]
Egerton A, Marsman A, Broberg BV, et al. Editorial: MR Spectroscopy in Neuropsychiatry[J/OL]. Front Psychiatry, 2018, 9 [2022-05-30]. https://pubmed.ncbi.nlm.nih.gov/29904358/. DOI: 10.3389/fpsyt.2018.00197.
[46]
Duman RS, Sanacora G, Krystal JH. Altered Connectivity in Depression: GABA and Glutamate Neurotransmitter Deficits and Reversal by Novel Treatments[J]. Neuron, 2019, 102(1): 75-90. DOI: 10.1016/j.neuron.2019.03.013
[47]
Draganov M, Vives-Gilabert Y, de Diego-Adeliño J, et al. Glutamatergic and GABA-ergic abnormalities in First-episode depression. A 1-year follow-up 1H-MR spectroscopic study[J]. J Affect Disord, 2020, 266: 572-577. DOI: 10.1016/j.jad.2020.01.138.
[48]
Dubin MJ, Mao X, Banerjee S, et al. Elevated prefrontal cortex GABA in patients with major depressive disorder after TMS treatment measured with proton magnetic resonance spectroscopy[J/OL]. J Psychiatry Neurosci, 2016, 41(3) [2022-05-30]. https://pubmed.ncbi.nlm.nih.gov/26900793/. DOI: 10.1503/jpn.150223.
[49]
Plante DT, Jensen JE, Schoerning L, et al. Reduced γ-aminobutyric acid in occipital and anterior cingulate cortices in primary insomnia: a link to major depressive disorder?[J]. Neuropsychopharmacology, 2012, 37(6): 1548-1557. DOI: 10.1038/npp.2012.4.
[50]
Park S, Kang I, Edden RAE, et al. Shorter sleep duration is associated with lower GABA levels in the anterior cingulate cortex[J]. Sleep Med, 2020, 71: 1-7. DOI: 10.1016/j.sleep.2020.02.018.
[51]
Benson KL, Bottary R, Schoerning L, et al. 1H MRS Measurement of Cortical GABA and Glutamate in Primary Insomnia and Major Depressive Disorder: Relationship to Sleep Quality and Depression Severity[J]. J Affect Disord, 2020, 274: 624-631. DOI: 10.1016/j.jad.2020.05.026.
[52]
Schur RR, Draisma LW, Wijnen JP, et al. Brain GABA levels across psychiatric disorders:A systematic literature review and meta-analysis of (1) H-MRS studies[J]. Hum Brain Mapp, 2016, 37: 3337-3352. DOI: 10.1002/hbm.23244.
[53]
Van Someren EJW. Brain mechanisms of insomnia: new perspectives on causes and consequences[J]. Physiol Rev, 2021, 101(3): 995-1046. DOI: 10.1152/physrev.00046.2019.
[54]
Urrila AS, Hakkarainen A, Castaneda A, et al. Frontal Cortex Myo-Inositol Is Associated with Sleep and Depression in Adolescents: A Proton Magnetic Resonance Spectroscopy Study[J]. Neuropsychobiology, 2017, 75(1): 21-31. DOI: 10.1159/000478861.
[55]
Rae CD. A guide to the metabolic pathways and function of metabolites observed in human brain 1H magnetic resonance spectra[J]. Neurochem Res, 2014, 9(1): 1-36. DOI: 10.1007/s11064-013-1199-5.
[56]
de Zambotti M, Goldstone A, Colrain IM, et al. Insomnia disorder in adolescence: Diagnosis, impact, and treatment[J]. Sleep Med Rev, 2018, 39: 12-24. DOI: 10.1016/j.smrv.2017.06.009.
[57]
Cheng W, Rolls ET, Ruan H, et al. Functional Connectivities in the Brain That Mediate the Association Between Depressive Problems and Sleep Quality[J]. JAMA Psychiatry, 2018, 75(10): 1052-1061. DOI: 10.1001/jamapsychiatry.2018.1941.
[58]
Raichle ME. The brain's default mode network[J]. Annu Rev Neurosci, 2015, 38: 433-447. DOI: 10.1146/annurev-neuro-071013-014030.
[59]
Li J, Liu J, Zhong Y, et al. Causal Interactions Between the Default Mode Network and Central Executive Network in Patients with Major Depression[J]. Neuroscience, 2021, 475: 93-102. DOI: 10.1016/j.neuroscience.2021.08.033.
[60]
Sevinc G, Gurvit H, Spreng RN. Salience network engagement with the detection of morally laden information[J]. Soc Cogn Affect Neurosci, 2017, 12(7): 1118-1127. DOI: 10.1093/scan/nsx035.
[61]
Zhu X, Yuan F, Zhou G, et al. Cross-network interaction for diagnosis of major depressive disorder based on resting state functional connectivity[J]. Brain Imaging Behav, 2021, 15(3): 1279-1289. DOI: 10.1007/s11682-020-00326-2.
[62]
Wu Y, Zhou Z, Fu S, et al. Abnormal Rich Club Organization of Structural Network as a Neuroimaging Feature in Relation With the Severity of Primary Insomnia[J/OL]. Front Psychiatry, 2020, 11 [2022-05-30]. https://pubmed.ncbi.nlm.nih.gov/32390883/. DOI: 10.3389/fpsyt.2020.00308.
[63]
Yu S, Guo B, Shen Z, et al. The imbalanced anterior and posterior default mode network in the primary insomnia[J]. J Psychiatr Res, 2018, 103: 97-103. DOI: 10.1016/j.jpsychires.2018.05.013.
[64]
Wu H, Zheng Y, Zhan Q, et al. Covariation between spontaneous neural activity in the insula and affective temperaments is related to sleep disturbance in individuals with major depressive disorder[J]. Psychol Med, 2021, 51(5): 731-740. DOI: 10.1017/S0033291719003647.
[65]
McKinnon AC, Hickie IB, Scott J, et al. Current sleep disturbance in older people with a lifetime history of depression is associated with increased connectivity in the Default Mode Network[J]. J Affect Disord, 2018, 229: 85-94. DOI: 10.1016/j.jad.2017.12.052.
[66]
Wu Z, Fang X, Yu L, et al. Abnormal functional connectivity of the anterior cingulate cortex subregions mediates the association between anhedonia and sleep quality in major depressive disorder[J]. J Affect Disord, 2022, 296: 400-407. DOI: 10.1016/j.jad.2021.09.104.
[67]
Peng X, Wu X, Gong R, et al. Sub-regional anterior cingulate cortex functional connectivity revealed default network subsystem dysfunction in patients with major depressive disorder[J]. Psychol Med, 2021, 51(10): 1687-1695. DOI: 10.1017/S0033291720000434.

PREV Research progress of brain networks in benign childhood epilepsy with centrotemporal spikes
NEXT Research progress of magnetic resonance imaging and nuclear medicine on heart disease induced by radiotherapy of thoracic tumors
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn