Share:
Share this content in WeChat
X
Review
Research progress of magnetic resonance imaging and nuclear medicine on heart disease induced by radiotherapy of thoracic tumors
WANG Rong  XIE Ping  WANG Haijun 

Cite this article as: Wang R, Xie P, Wang HJ. Research progress of magnetic resonance imaging and nuclear medicine on heart disease induced by radiotherapy of thoracic tumors[J]. Chin J Magn Reson Imaging, 2022, 13(12): 146-149. DOI:10.12015/issn.1674-8034.2022.12.027.


[Abstract] Radiation-induced heart disease (RIHD) is a heterogeneous and complex disease, usually with insidious clinical manifestations, overlapping with multiple diseases, and lack of specificity. Accurate identification of subclinical cardiac involvement and early intervention maximizes the benefit of radiotherapy and improves the prognosis of patients with thoracic tumors. Cardiac magnetic resonance (CMR) and nuclear medicine have advantages in detecting subclinical cardiac involvement in patients with RIHD, and providing guidance for the treatment and prognosis assessment of patients with RIHD. This article reviews the application and research progress of CMR and radionuclide myocardial imaging in the subclinical diagnosis and quantitative assessment of RIHD patients with thoracic tumor.
[Keywords] thoracic cancer;radiation therapy;heart disease;magnetic resonance imaging;nuclear medicine;early diagnosis

WANG Rong1, 2   XIE Ping2, 3*   WANG Haijun1*  

1 Department of Nuclear Medicine, Gansu Provincial Hospital, Lanzhou 730000, China

2 The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China

3 Department of Cardiology, Gansu Provincial Hospital, Lanzhou 730000, China

Xie P, E-mail: pingxie66@163.com Wang HJ, E-mail: whj1425@126.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 81860047); Natural Science Foundation of Gansu Province (No. 21JR1RA025).
Received  2022-07-01
Accepted  2022-11-29
DOI: 10.12015/issn.1674-8034.2022.12.027
Cite this article as: Wang R, Xie P, Wang HJ. Research progress of magnetic resonance imaging and nuclear medicine on heart disease induced by radiotherapy of thoracic tumors[J]. Chin J Magn Reson Imaging, 2022, 13(12): 146-149. DOI:10.12015/issn.1674-8034.2022.12.027.

[1]
Quintero-Martinez JA, Cordova-Madera SN, Villarraga HR. Radiation-Induced Heart Disease[J/OL]. J Clin Med, 2021, 11(1): 146 [2022-07-11]. https://doi.org/10.3390/jcm11010146. DOI: 10.3390/jcm11010146.
[2]
Mitchell JD, Cehic DA, Morgia M, et al. Cardiovascular manifestations from therapeutic radiation: a multidisciplinary expert consensus statement from the international cardio-oncology society[J]. JACC CardioOncol, 2021, 3(3): 360-380. DOI: 10.1016/j.jaccao.2021.06.003.
[3]
Desai MY, Windecker S, Lancellotti P, et al. Prevention, diagnosis, and management of radiation-associated cardiac disease[J]. J Am Coll Cardiol, 2019, 74(7): 905-927. DOI: 10.1016/j.jacc.2019.07.006.
[4]
de Groot C, Beukema JC, Langendijk JA, et al. Radiation-induced myocardial fibrosis in long-term esophageal cancer survivors[J]. Int J Radiat Oncol Biol Phys, 2021, 110(4): 1013-1021. DOI: 10.1016/j.ijrobp.2021.02.007.
[5]
Pedersen LN, Schiffer W, Mitchell JD, et al. Radiation-induced cardiac dysfunction: practical implications[J]. Kardiol Pol, 2022, 80(3): 256-265. DOI: 10.33963/KP.a2022.0066.
[6]
Kirresh A, White L, Mitchell A, et al. Radiation-induced coronary artery disease: a difficult clinical conundrum[J]. Clin Med (Lond), 2022, 22(3): 251-256. DOI: 10.7861/clinmed.2021-0600.
[7]
Lu LS, Wu YW, Chang JTC, et al. Risk management for radiation-induced cardiovascular disease (RICVD): the 2022 consensus statement of the Taiwan society for therapeutic radiology and oncology (TASTRO) and Taiwan society of cardiology (TSOC)[J]. Acta Cardiol Sin, 2022, 38(1): 1-12. DOI: 10.6515/ACS.202201_38(1).20211122A.
[8]
Thorsen LBJ, Overgaard J, Matthiessen LW, et al. Internal mammary node irradiation in patients with node-positive early breast cancer: fifteen-year results from the Danish breast cancer group internal mammary node study[J/OL]. J Clin Oncol, 2022 [2022-07-11]. https://doi.org/10.1200/JCO.22.00044. DOI: 10.1200/jco.22.00044.
[9]
Beukema JC, de Groot C, Plukker JTM, et al. Late cardiac toxicity of neo-adjuvant chemoradiation in esophageal cancer survivors: a prospective cross-sectional pilot study[J]. Radiother Oncol, 2022, 167: 72-77. DOI: 10.1016/j.radonc.2021.11.029.
[10]
Chang WT, Liu CF, Feng YH, et al. An artificial intelligence approach for predicting cardiotoxicity in breast cancer patients receiving anthracycline[J]. Arch Toxicol, 2022, 96(10): 2731-2737. DOI: 10.1007/s00204-022-03341-y.
[11]
Zamorano JL, Lancellotti P, Rodriguez Muñoz D, et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: the Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC)[J]. Eur Heart J, 2016, 37(36): 2768-2801. DOI: 10.1093/eurheartj/ehw211.
[12]
Bergom C, Bradley JA, Ng AK, et al. Past, present, and future of radiation-induced cardiotoxicity: refinements in targeting, surveillance, and risk stratification[J]. JACC CardioOncol, 2021, 3(3): 343-359. DOI: 10.1016/j.jaccao.2021.06.007.
[13]
Koutroumpakis E, Deswal A, Yusuf SW, et al. Radiation-induced cardiovascular disease: mechanisms, prevention, and treatment[J]. Curr Oncol Rep, 2022, 24(5): 543-553. DOI: 10.1007/s11912-022-01238-8.
[14]
Luo L, Yan C, Fuchi N, et al. Mesenchymal stem cell-derived extracellular vesicles as probable triggers of radiation-induced heart disease[J/OL]. Stem Cell Res Ther, 2021, 12(1): 422 [2022-07-11]. https://doi.org/10.10.1186/s13287-021-02504-5. DOI: 10.1186/s13287-021-02504-5.
[15]
Livingston K, Schlaak RA, Puckett LL, et al. The role of mitochondrial dysfunction in radiation-induced heart disease: from bench to bedside[J/OL]. Front Cardiovasc Med, 2020, 7: 20 [2022-07-11]. https://doi.org/10.3389/fcvm.2020.00020. DOI: 10.3389/fcvm.2020.00020.
[16]
Mahdavi H. Radiation oncologists' perspectives on reducing radiation-induced heart disease in early breast cancer[J/OL]. Curr Probl Cancer, 2020, 44(2): 100509 [2022-07-11]. https://doi.org/10.1016/j.currproblcancer.2019.100509. DOI: 10.1016/j.currproblcancer.2019.100509.
[17]
Ricco A, Slade A, Canada JM, et al. Cardiac MRI utilizing late gadolinium enhancement (LGE) and T1 mapping in the detection of radiation induced heart disease[J/OL]. Cardiooncology, 2020, 6: 6 [2022-07-11]. https://doi.org/10.1186/s40959-020-00061-z. DOI: 10.1186/s40959-020-00061-z.
[18]
Belzile-Dugas E, Eisenberg MJ. Radiation-induced cardiovascular disease: review of an underrecognized pathology[J/OL]. J Am Heart Assoc, 2021, 10(18): e021686 [2022-07-11]. https://doi.org/10.1161/JAHA.121.021686. DOI: 10.1161/jaha.121.021686.
[19]
Šteiner I. Pathology of radiation induced heart disease[J]. Rep Pract Oncol Radiother, 2020, 25(2): 178-181. DOI: 10.1016/j.rpor.2019.12.015.
[20]
Aimo A, Gimelli A. Myocardial perfusion years after radiation therapy for left-sided breast cancer: normal or abnormal? This is the question[J]. J Nucl Cardiol, 2021, 28(5): 1933-1935. DOI: 10.1007/s12350-019-01959-7.
[21]
Patel AR, Salerno M, Kwong RY, et al. Stress cardiac magnetic resonance myocardial perfusion imaging: JACC review topic of the week[J]. J Am Coll Cardiol, 2021, 78(16): 1655-1668. DOI: 10.1016/j.jacc.2021.08.022.
[22]
Franks R, Plein S, Chiribiri A. Clinical application of dynamic contrast enhanced perfusion imaging by cardiovascular magnetic resonance[J/OL]. Front Cardiovasc Med, 2021, 8: 768563 [2022-07-11]. https://doi.org/10.3389/fcvm.2021.768563. DOI: 10.3389/fcvm.2021.768563.
[23]
Hong YJ, Kim GM, Han K, et al. Cardiotoxicity evaluation using magnetic resonance imaging in breast Cancer patients (CareBest): study protocol for a prospective trial[J/OL]. BMC Cardiovasc Disord, 2020, 20(1): 264 [2022-07-11]. https://doi.org/10.1186/s12872-020-01497-y. DOI: 10.1186/s12872-020-01497-y.
[24]
Flores-Umanzor EJ, Hernández-Enríquez M, Caldentey G, et al. Radiation-induced cardiac valve disease[J/OL]. Am J Med, 2017, 130(3): e99-e100 [2022-07-11]. https://doi.org/10.1016/j.amjmed.2016.08.050. DOI: 10.1016/j.amjmed.2016.08.050.
[25]
Wu RF, Su JS, Song JB. Canine heart radioactive damage early function change of MRI observed[J]. J Pract Med Imaging, 2015, 16(3): 215-217. DOI: 10.16106/j.cnki.cn14-1281/r.2015.03.009.
[26]
Sharma UC, Sonkawade SD, Baird A, et al. Effects of a novel peptide Ac-SDKP in radiation-induced coronary endothelial damage and resting myocardial blood flow[J/OL]. Cardiooncology, 2018, 4: 8 [2022-07-11]. https://doi.org/10.1186/s40959-018-0034-1. DOI: 10.1186/s40959-018-0034-1.
[27]
Huang YJ, Harrison A, Sarkar V, et al. Detection of late radiation damage on left atrial fibrosis using cardiac late gadolinium enhancement magnetic resonance imaging[J]. Adv Radiat Oncol, 2016, 1(2): 106-114. DOI: 10.1016/j.adro.2016.04.002.
[28]
Umezawa R, Ota H, Takanami K, et al. MRI findings of radiation-induced myocardial damage in patients with oesophageal cancer[J]. Clin Radiol, 2014, 69(12): 1273-1279. DOI: 10.1016/j.crad.2014.08.010.
[29]
Rodrigues JC, Lyen SM, Hamilton MC, et al. Re: MRI findings of radiation-induced myocardial damage in patients with oesophageal cancer[J]. Clin Radiol, 2015, 70(6): 676-677. DOI: 10.1016/j.crad.2014.12.014.
[30]
Mukai-Yatagai N, Haruki N, Kinugasa Y, et al. Assessment of myocardial fibrosis using T1-mapping and extracellular volume measurement on cardiac magnetic resonance imaging for the diagnosis of radiation-induced cardiomyopathy[J]. J Cardiol Cases, 2018, 18(4): 132-135. DOI: 10.1016/j.jccase.2018.06.001.
[31]
Jia TY, Qin PX, Hu F, et al. Principle of T1 mapping technique and its research progress in myocardial quantification[J]. Chin J Magn Reson Imaging, 2022, 13(3): 151-158. DOI: 10.12015/issn.1674-8034.2022.03.037.
[32]
Wu X, Tang LL, Hu YT, et al. Research progress of MRI radiomics in cardiac diseases[J]. Chin J Magn Reson Imaging, 2021, 12(11): 113-116. DOI: 10.12015/issn.1674-8034.2021.11.028.
[33]
Speers C, Murthy VL, Walker EM, et al. Cardiac magnetic resonance imaging and blood biomarkers for evaluation of radiation-induced cardiotoxicity in patients with breast cancer: results of a phase 2 clinical trial[J]. Int J Radiat Oncol Biol Phys, 2022, 112(2): 417-425. DOI: 10.1016/j.ijrobp.2021.08.039.
[34]
Tahir E, Azar M, Shihada S, et al. Myocardial injury detected by T1 and T2 mapping on CMR predicts subsequent cancer therapy-related cardiac dysfunction in patients with breast cancer treated by epirubicin-based chemotherapy or left-sided RT[J]. Eur Radiol, 2022, 32(3): 1853-1865. DOI: 10.1007/s00330-021-08260-7.
[35]
Houbois CP, Nolan M, Somerset E, et al. Serial cardiovascular magnetic resonance strain measurements to identify cardiotoxicity in breast cancer: comparison with echocardiography[J]. JACC Cardiovasc Imaging, 2021, 14(5): 962-974. DOI: 10.1016/j.jcmg.2020.09.039.
[36]
Barbosa MF, Fusco DR, Gaiolla RD, et al. Characterization of subclinical diastolic dysfunction by cardiac magnetic resonance feature-tracking in adult survivors of non-Hodgkin lymphoma treated with anthracyclines[J/OL]. BMC Cardiovasc Disord, 2021, 21(1): 170 [2022-07-11]. https://doi.org/10.1186/s12872-021-01996-6. DOI: 10.1186/s12872-021-01996-6.
[37]
Polomski ES, Antoni ML, Jukema JW, et al. Nuclear medicine imaging methods of radiation-induced cardiotoxicity[J/OL]. Semin Nucl Med, 2022, 52(5): 597-610. DOI: 10.1053/j.semnuclmed.2022.02.001.
[38]
Jingu K, Kaneta T, Nemoto K, et al. The utility of 18F-fluorodeoxyglucose positron emission tomography for early diagnosis of radiation-induced myocardial damage[J]. Int J Radiat Oncol Biol Phys, 2006, 66(3): 845-851. DOI: 10.1016/j.ijrobp.2006.06.007.
[39]
Eber J, Leroy-Freschini B, Antoni D, et al. Increased cardiac uptake of (18F)-fluorodeoxyglucose incidentally detected on positron emission tomography after left breast irradiation: how to interpret?[J]. Cancer Radiother, 2022, 26(5): 724-729. DOI: 10.1016/j.canrad.2021.10.010.
[40]
Rasmussen T, Kjær A, Lassen ML, et al. No changes in myocardial perfusion following radiation therapy of left-sided breast cancer: a positron emission tomography study[J]. J Nucl Cardiol, 2021, 28(5): 1923-1932. DOI: 10.1007/s12350-019-01949-9.
[41]
El-Sherif O, Xhaferllari I, Sykes J, et al. [18F]FDG cardiac PET imaging in a canine model of radiation-induced cardiovascular disease associated with breast cancer radiotherapy[J]. Am J Physiol Heart Circ Physiol, 2019, 316(3): H586-H595. DOI: 10.1152/ajpheart.00273.2018.
[42]
Song JB, Yan R, Wu ZF, et al. 13N-ammonia PET/CT detection of myocardial perfusion abnormalities in beagle dogs after local heart irradiation[J]. J Nucl Med, 2017, 58(4): 605-610. DOI: 10.2967/jnumed.116.179697.
[43]
Yan R, Li X, Song JB, et al. Metabolic changes precede radiation-induced cardiac remodeling in beagles: using noninvasive 18F-FDG (18F-fludeoxyglucose) and 13N-ammonia positron emission tomography/computed tomography scans[J/OL]. J Am Heart Assoc, 2020, 9(18): e016875 [2022-07-11]. https://doi.org/10.1161/JAHA.120.016875. DOI: 10.1161/JAHA.120.016875.
[44]
Zhang P, Hu XD, Yue JB, et al. Early detection of radiation-induced heart disease using (99m)Tc-MIBI SPECT gated myocardial perfusion imaging in patients with oesophageal cancer during radiotherapy[J]. Radiother Oncol, 2015, 115(2): 171-178. DOI: 10.1016/j.radonc.2015.04.009.
[45]
Marks LB, Yu XL, Prosnitz RG, et al. The incidence and functional consequences of RT-associated cardiac perfusion defects[J]. Int J Radiat Oncol Biol Phys, 2005, 63(1): 214-223. DOI: 10.1016/j.ijrobp.2005.01.029.
[46]
Gayed IW, Liu HH, Yusuf SW, et al. The prevalence of myocardial ischemia after concurrent chemoradiation therapy as detected by gated myocardial perfusion imaging in patients with esophageal cancer[J]. J Nucl Med, 2006, 47(11): 1756-1762.
[47]
Prosnitz RG, Hubbs JL, Evans ES, et al. Prospective assessment of radiotherapy-associated cardiac toxicity in breast cancer patients: analysis of data 3 to 6 years after treatment[J]. Cancer, 2007, 110(8): 1840-1850. DOI: 10.1002/cncr.22965.
[48]
Abraham A, Sanghera KP, Gheisari F, et al. Is radiation-induced cardiac toxicity reversible? prospective evaluation of patients with breast cancer enrolled in a phase 3 randomized controlled trial[J]. Int J Radiat Oncol Biol Phys, 2022, 113(1): 125-134. DOI: 10.1016/j.ijrobp.2022.01.020.
[49]
Heidenreich PA, Schnittger I, Strauss HW, et al. Screening for coronary artery disease after mediastinal irradiation for Hodgkin's disease[J]. J Clin Oncol, 2007, 25(1): 43-49. DOI: 10.1200/JCO.2006.07.0805.
[50]
Norikane T, Yamamoto Y, Takami Y, et al. Radiation-induced myocardial damage indicated by focal defect on 123I-MIBG SPECT[J]. Eur J Nucl Med Mol Imaging, 2019, 46(11): 2404-2405. DOI: 10.1007/s00259-019-04416-2.
[51]
Takanami K, Arai A, Umezawa R, et al. Association between radiation dose to the heart and myocardial fatty acid metabolic impairment due to chemoradiation-therapy: prospective study using I-123 BMIPP SPECT/CT[J]. Radiother Oncol, 2016, 119(1): 77-83. DOI: 10.1016/j.radonc.2016.01.024.

PREV Research progress of MRI in major depressive disorder with insomnia
NEXT Advances in the application of magnetic resonance elastography in the diagnosis and treatment of hepatocellular carcinoma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn