Share:
Share this content in WeChat
X
Review
Research progress of machine learning model based on CT and MRI radiomics for predicting early recurrence of hepatocellular carcinoma
YUAN Jinglei  XIE Xiaotong  ZHANG Peina  MA Liheng 

Cite this article as: Yuan JL, Xie XT, Zhang PN, et al. Research progress of machine learning model based on CT and MRI radiomics for predicting early recurrence of hepatocellular carcinoma[J]. Chin J Magn Reson Imaging, 2022, 13(12): 154-158. DOI:10.12015/issn.1674-8034.2022.12.029.


[Abstract] Patients with early recurrence of hepatocellular carcinoma (HCC) tend to have a worse prognosis than those with late recurrence, and most of the early symptoms of the disease are non-specific. Machine learning (ML) is the core branch of artificial intelligence (AI), with the increasing development of AI, radiomics combined with ML breaks the limitations of human eye recognition, deeply explores the hidden information of texture and morphology in medical images that reflect certain biological characteristics of cells, processes and screens high-dimensional features for quantitative data analysis. Building HCC early recurrence prediction models can benefit more patients from clinical treatment as early as possible and thus improve survival rates. In this article, we compare and analyze the CT and MRI based radiomics models in the literature for predicting early recurrence of HCC and review their research progress.
[Keywords] hepatocellular carcinoma;early recurrence;radiomics;artificial intelligence;machine learning;computed tomography;magnetic resonance imaging

YUAN Jinglei   XIE Xiaotong   ZHANG Peina   MA Liheng*  

Department of Medical Imaging, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China

Ma LH, E-mail: liheng.ma@163.com

Conflicts of interest   None.

Received  2022-03-06
Accepted  2022-10-08
DOI: 10.12015/issn.1674-8034.2022.12.029
Cite this article as: Yuan JL, Xie XT, Zhang PN, et al. Research progress of machine learning model based on CT and MRI radiomics for predicting early recurrence of hepatocellular carcinoma[J]. Chin J Magn Reson Imaging, 2022, 13(12): 154-158. DOI:10.12015/issn.1674-8034.2022.12.029.

[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
Cheng ZJ, Yang PH, Qu SP, et al. Risk factors and management for early and late intrahepatic recurrence of solitary hepatocellular carcinoma after curative resection[J]. HPB (Oxford), 2015, 17(5): 422-427. DOI: 10.1111/hpb.12367.
[3]
Wu CJ, Chau GY, Lee IC, et al. Early and late recurrence of surgically resected hepatitis B virus-related hepatocellular carcinoma on nucleos(t)ide analogues therapy[J]. J Formos Med Assoc, 2021, 120(8): 1563-1571. DOI: 10.1016/j.jfma.2020.11.019.
[4]
Wei T, Zhang XF, Bagante F, et al. Early versus late recurrence of hepatocellular carcinoma after surgical resection based on post-recurrence survival: an international multi-institutional analysis[J]. J Gastrointest Surg, 2021, 25(1): 125-133. DOI: 10.1007/s11605-020-04553-2.
[5]
Yao S, Ye Z, Wei Y, et al. Radiomics in hepatocellular carcinoma: a state-of-the-art review[J]. World J Gastrointest Oncol, 2021, 13(11): 1599-1615. DOI: 10.4251/wjgo.v13.i11.1599.
[6]
Portolani N, Coniglio A, Ghidoni S, et al. Early and late recurrence after liver resection for hepatocellular carcinoma: prognostic and therapeutic implications[J]. Ann Surg, 2006, 243(2): 229-235. DOI: 10.1097/01.sla.0000197706.21803.a1.
[7]
Chan AWH, Zhong JH, Berhane S, et al. Development of pre and post-operative models to predict early recurrence of hepatocellular carcinoma after surgical resection[J]. J Hepatol, 2018, 69(6): 1284-1293. DOI: 10.1016/j.jhep.2018.08.027.
[8]
Zhou SL, Zhou ZJ, Hu ZQ, et al. Genomic sequencing identifies WNK2 as a driver in hepatocellular carcinoma and a risk factor for early recurrence[J]. J Hepatol, 2019, 71(6): 1152-1163. DOI: 10.1016/j.jhep.2019.07.014.
[9]
Lee S, Kang TW, Song KD, et al. Effect of microvascular invasion risk on early recurrence of hepatocellular carcinoma after surgery and radiofrequency ablation[J]. Ann Surg, 2021, 273(3): 564-571. DOI: 10.1097/SLA.0000000000003268.
[10]
Wu Y, Liu H, Zeng J, et al. Development and validation of nomogram to predict very early recurrence of combined hepatocellular-cholangiocarcinoma after hepatic resection: a multi-institutional study[J/OL]. World J Surg Oncol, 2022, 20(1) [2022-09-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8883704/pdf/12957_2022_Article_2536.pdf. DOI: 10.1186/s12957-022-02536-y.
[11]
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
[12]
Wei JW, Jiang HY, Gu DS, et al. Radiomics in liver diseases: current progress and future opportunities[J]. Liver Int, 2020, 40(9): 2050-2063. DOI: 10.1111/liv.14555.
[13]
Masokano IB, Liu W, Xie S, et al. The application of texture quantification in hepatocellular carcinoma using CT and MRI: a review of perspectives and challenges[J/OL]. Cancer Imaging, 2020, 20(1) [2022-09-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7510095/pdf/40644_2020_Article_341.pdf. DOI: 10.1186/s40644-020-00341-y.
[14]
Park H, Park B, Lee SS. Radiomics and deep learning: hepatic applications[J]. Korean J Radiol, 2020, 21: 387-401. DOI: 10.3348/kjr.2019.0752.
[15]
Erickson B, Korfiatis P, Akkus Z, et al. Machine learning for medical imaging[J]. Radiographics, 2017, 37(2): 505-515. DOI: 10.1148/rg.2017160130.
[16]
Lee JG, Jun S, Cho YW, et al. Deep learning in medical imaging: general overview[J]. Korean J Radiol, 2017, 18(4): 570-584. DOI: 10.3348/kjr.2017.18.4.570.
[17]
Bento M, Fantini I, Park J, et al. Deep Learning in Large and Multi-Site Structural Brain MR Imaging Datasets[J/OL]. Front Neuroinform, 2021, 15 [2022-09-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8811356/pdf/fninf-15-805669.pdf. DOI: 10.3389/fninf.2021.805669.
[18]
Mai RY, Zeng J, Meng W, et al. Artificial neural network model to predict post-hepatectomy early recurrence of hepatocellular carcinoma without macroscopic vascular invasion[J/OL]. BMC Cancer, 2021, 21(1) [2022-09-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7962237/pdf/12885_2021_Article_7969.pdf. DOI: 10.1186/s12885-021-07969-4.
[19]
Wang WB, Chen QQ, Iwamoto Y, et al. Deep learning-based radiomics models for early recurrence prediction of hepatocellular carcinoma with multi-phase CT images and clinical data[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2019, 2019: 4881-4884. DOI: 10.1109/EMBC.2019.8856356.
[20]
Song DJ, Wang YY, Wang WT, et al. Using deep learning to predict microvascular invasion in hepatocellular carcinoma based on dynamic contrast-enhanced MRI combined with clinical parameters[J]. J Cancer Res Clin Oncol, 2021, 147(12): 3757-3767. DOI: 10.1007/s00432-021-03617-3.
[21]
Limkin EJ, Sun R, Dercle L, et al. Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology[J]. Ann Oncol, 2017, 28(6): 1191-1206. DOI: 10.1093/annonc/mdx034.
[22]
Zhu Y, Mao Y, Chen J, et al. Radiomics-based model for predicting early recurrence of intrahepatic mass-forming cholangiocarcinoma after curative tumor resection[J/OL]. Sci Rep, 2021, 11(1) [2022-09-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8443588/pdf/41598_2021_Article_97796.pdf. DOI: 10.1038/s41598-021-97796-1.
[23]
Yuan C, Wang Z, Gu D, et al. Prediction early recurrence of hepatocellular carcinoma eligible for curative ablation using a Radiomics nomogram[J/OL]. Cancer Imaging, 2019, 19(1) [2022-09-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6485136/pdf/40644_2019_Article_207.pdf. DOI: 10.1186/s40644-019-0207-7.
[24]
Shan QY, Hu HT, Feng ST, et al. CT-based peritumoral radiomics signatures to predict early recurrence in hepatocellular carcinoma after curative tumor resection or ablation[J/OL]. Cancer Imaging, 2019, 19(1) [2022-09-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6391838/pdf/40644_2019_Article_197.pdf. DOI: 10.1186/s40644-019-0197-5.
[25]
Ning PG, Gao F, Hai JJ, et al. Application of CT radiomics in prediction of early recurrence in hepatocellular carcinoma[J]. Abdom Radiol (NY), 2020, 45(1): 64-72. DOI: 10.1007/s00261-019-02198-7.
[26]
Zhu HB, Zheng ZY, Zhao H, et al. Radiomics-based nomogram using CT imaging for noninvasive preoperative prediction of early recurrence in patients with hepatocellular carcinoma[J]. Diagn Interv Radiol, 2020, 26(5): 411-419. DOI: 10.5152/dir.2020.19623.
[27]
Xiong LX, Fang QM, Li SH, et al. Value of radiomics of contrast-enhanced CT inprediction of early postoperative recurrence in hepatocellular carcinoma[J]. Radiol Pract, 2022, 37(4): 432-436. DOI: 10.13609/j.cnki.1000-0313.2022.04.004.
[28]
Li N, Wan X, Zhang H, et al. Tumor and peritumor radiomics analysis based on contrast-enhanced CT for predicting early and late recurrence of hepatocellular carcinoma after liver resection[J/OL]. BMC Cancer, 2022, 22(1) [2022-09-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9205126/pdf/12885_2022_Article_9743.pdf. DOI: 10.1186/s12885-022-09743-6.
[29]
Wu C, Yu S, Zhang Y, et al. CT-Based Radiomics Nomogram Improves Risk Stratification and Prediction of Early Recurrence in Hepatocellular Carcinoma After Partial Hepatectomy[J/OL]. Front Oncol, 2022, 12 [2022-09-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9302642/pdf/fonc-12-896002.pdf. DOI: 10.3389/fonc.2022.896002.
[30]
Kim S, Shin J, Kim DY, et al. Radiomics on gadoxetic acid-enhanced magnetic resonance imaging for prediction of postoperative early and late recurrence of single hepatocellular carcinoma[J]. Clin Cancer Res, 2019, 25(13): 3847-3855. DOI: 10.1158/1078-0432.CCR-18-2861.
[31]
Zhang Z, Jiang H, Chen J, et al. Hepatocellular carcinoma: radiomics nomogram on gadoxetic acid-enhanced MR imaging for early postoperative recurrence prediction[J/OL]. Cancer imaging, 2019, 19(1) [2022-09-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6518803/pdf/40644_2019_Article_209.pdf. DOI: 10.1186/s40644-019-0209-5.
[32]
Zhao Y, Wu JJ, Zhang QH, et al. Radiomics analysis based on multiparametric MRI for predicting early recurrence in hepatocellular carcinoma after partial hepatectomy[J]. J Magn Reson Imaging, 2021, 53(4): 1066-1079. DOI: 10.1002/jmri.27424.
[33]
Wang L, Ma X, Feng B, et al. Multi-Sequence MR-Based Radiomics Signature for Predicting Early Recurrence in Solitary Hepatocellular Carcinoma ≤5 cm[J/OL]. Front Oncol, 2022, 12 [2022-09-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9213728/pdf/fonc-12-899404.pdf. DOI: 10.3389/fonc.2022.899404.
[34]
Shen JX, Zhou Q, Chen ZH, et al. Longitudinal radiomics algorithm of posttreatment computed tomography images for early detecting recurrence of hepatocellular carcinoma after resection or ablation[J/OL]. Transl Oncol, 2021, 14(1) [2022-09-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7569222/pdf/main.pdf. DOI: 10.1016/j.tranon.2020.100866.
[35]
Imai Y, Katayama K, Hori M, et al. Prospective comparison of Gd-EOB-DTPA-enhanced MRI with dynamic CT for detecting recurrence of HCC after radiofrequency ablation[J]. Liver Cancer, 2017, 6(4): 349-359. DOI: 10.1159/000481416.
[36]
Tsai YC, Shih JH, Hwang HE, et al. Early prediction of 1-year tumor response of hepatocellular carcinoma with lipiodol deposition pattern through post-embolization cone-beam computed tomography during conventional transarterial chemoembolization[J]. Eur Radiol, 2021, 31(10): 7464-7475. DOI: 10.1007/s00330-021-07843-8.
[37]
Segal E, Sirlin CB, Ooi C, et al. Decoding global gene expression programs in liver cancer by noninvasive imaging[J]. Nat Biotechnol, 2007, 25(6): 675-680. DOI: 10.1038/nbt1306.
[38]
Zhou Y, He L, Huang YQ, et al. CT-based radiomics signature: a potential biomarker for preoperative prediction of early recurrence in hepatocellular carcinoma[J]. Abdom Radiol (NY), 2017, 42(6): 1695-1704. DOI: 10.1007/s00261-017-1072-0.
[39]
Lee YJ, Lee JM, Lee JS, et al. Hepatocellular carcinoma: diagnostic performance of multidetector CT and MR imaging-a systematic review and meta-analysis[J]. Radiology, 2015, 275(1): 97-109. DOI: 10.1148/radiol.14140690.
[40]
Gatti M, Maino C, Darvizeh F, et al. Role of gadoxetic acid-enhanced liver magnetic resonance imaging in the evaluation of hepatocellular carcinoma after locoregional treatment[J]. World J Gastroenterol, 2022, 28(26): 3116-3131. DOI: 10.3748/wjg.v28.i26.3116.
[41]
Hui TCH, Chuah TK, Low HM, et al. Predicting early recurrence of hepatocellular carcinoma with texture analysis of preoperative MRI: a radiomics study[J/OL]. Clin Radiol, 2018, 73(12) [2022-09-27]. https://www.sciencedirect.com/science/article/abs/pii/S0009926018303982. DOI: 10.1016/j.crad.2018.07.109.
[42]
Nault JC, Sutter O, Nahon P, et al. Percutaneous treatment of hepatocellular carcinoma: state of the art and innovations[J]. J Hepatol, 2018, 68(4): 783-797. DOI: 10.1016/j.jhep.2017.10.004.
[43]
Llovet JM, De Baere T, Kulik L, et al. Locoregional therapies in the era of molecular and immune treatments for hepatocellular carcinoma[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(5): 293-313. DOI: 10.1038/s41575-020-00395-0.
[44]
Wen L, Weng S, Yan C, et al. A Radiomics Nomogram for Preoperative Prediction of Early Recurrence of Small Hepatocellular Carcinoma After Surgical Resection or Radiofrequency Ablation[J/OL]. Front Oncol, 2021, 11 [2022-09-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8139248/pdf/fonc-11-657039.pdf. DOI: 10.3389/fonc.2021.657039.
[45]
Solomon J, Mileto A, Nelson RC, et al. Quantitative features of liver lesions, lung nodules, and renal stones at multi-detector row CT examinations: dependency on radiation dose and reconstruction algorithm[J]. Radiology, 2016, 279(1): 185-194. DOI: 10.1148/radiol.2015150892.
[46]
Perrin T, Midya A, Yamashita R, et al. Short-term reproducibility of radiomic features in liver parenchyma and liver malignancies on contrast-enhanced CT imaging[J]. Abdom Radiol (NY), 2018, 43(12): 3271-3278. DOI: 10.1007/s00261-018-1600-6.
[47]
Mayerhoefer ME, Szomolanyi P, Jirak D, et al. Effects of MRI acquisition parameter variations and protocol heterogeneity on the results of texture analysis and pattern discrimination: an application-oriented study[J]. Med Phys, 2009, 36(4): 1236-1243. DOI: 10.1118/1.3081408.
[48]
Yang F, Dogan N, Stoyanova R, et al. Evaluation of radiomic texture feature error due to MRI acquisition and reconstruction: a simulation study utilizing ground truth[J]. Phys Med, 2018, 50: 26-36. DOI: 10.1016/j.ejmp.2018.05.017.
[49]
Roberts LR, Sirlin CB, Zaiem F, et al. Imaging for the diagnosis of hepatocellular carcinoma: a systematic review and meta-analysis[J]. Hepatology, 2018, 67(1): 401-421. DOI: 10.1002/hep.29487.
[50]
Ng F, Kozarski R, Ganeshan B, et al. Assessment of tumor heterogeneity by CT texture analysis: can the largest cross-sectional area be used as an alternative to whole tumor analysis?[J]. Eur J Radiol, 2013, 82(2): 342-348. DOI: 10.1016/j.ejrad.2012.10.023.

PREV Advances in the application of magnetic resonance elastography in the diagnosis and treatment of hepatocellular carcinoma
NEXT Research progress of colorectal cancer radiogenomics
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn