Share:
Share this content in WeChat
X
Clinical Article
Rs-fMRI study of binary degree centrality and weighted degree centrality changes in the functional brain network in children with self-limited epilepsy with central temporal spikes
JIANG Lin  ZHANG Jiaren  LIU Heng  LI Dongxue  ZHANG Tijiang 

Cite this article as: JIANG L, ZHANG J R, LIU H, et al. Rs-fMRI study of binary degree centrality and weighted degree centrality changes in the functional brain network in children with self-limited epilepsy with central temporal spikes[J]. Chin J Magn Reson Imaging, 2023, 14(1): 36-40, 60. DOI:10.12015/issn.1674-8034.2023.01.007.


[Abstract] Objective Self-limited epilepsy in children with centrotemporal spikes (SeLECTS) is the most common idiopathic focal epilepsy in children and is associated with temporal and spatial changes in resting-state brain network connectivity. This study used resting state fMRI-based binariy degree centrality (DC) and weighted DC method was used to analyze the changes of brain functional network in SeLECTS, so as to explore the potential neurobiological mechanism of SeLECTS.Materials and Methods Resting state functional MRI (rs-fMRI) were collected from 26 SeLECTS patients (SeLECTS group) and 26 healthy volunteers (control group). The rs-fMRI data were processed using the voxel-based brain function network DC method to obtain binary and weighted DC values and to compare the differences in the above parameters within and between the two groups.Results The values of binary DC and weighted DC spatial distributions of SeLECTS group and control group were broadly similar. Compared with healthy controls, the SeLECTS group showed increased binary DC values in the bilateral calcarine cortex, occipital middle cortex, and right fusiform cortex, and decreased binary DC values in the right inferior temporal gyrus and left cerebellum, cerebellar cortex, and superior parietal lobule; the SeLECTS group showed increased weighted DC values in the bilateral calcarine cortex, occipital middle cortex, and right syrinx, and decreased weighted DC values in the right inferior temporal gyrus and left inferior parietal lobule cortex, cerebellum, cerebellar cortex, and precuneus. In addition, correlation analysis showed that, significant positive correlation between the value of binary DC and weighted DC and the epilepsy duration was found in the calcarine cortex (r=0.712, r=0.700, P<0.001), while significant negative correlation were found in the superior parietal lobule (r=-0.680, r=-0.717, P<0.001).Conclusions This study suggests that selective and specific disruption of hub nodes, particularly functional network nodes with abnormal configurations of highly connected brain regions, may be associated with the pathogenesis of SeLECTS.
[Keywords] epilepsy self-limited childhood epilepsy with centrotemporal spikes;magnetic resonance imaging;brain functional network;degree centrality

JIANG Lin1*   ZHANG Jiaren1   LIU Heng2   LI Dongxue1   ZHANG Tijiang2  

1 Department of Medical Imaging, the First People's Hospital of Zunyi, the Third Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China

2 Department of Medical Imaging, Affiliated Hospital of Zunyi Medical University, Imaging Centre of Guizhou, Zunyi 563000, China

Corresponding author: Jiang L, E-mail: jlinzmc@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 82160328); Guizhou Provincial Natural Science Foundation (No. Qian Ke He Jichu-ZK〔2021〕Yiban 479); Natural Science Foundation of Zunyi (No. Zun Shi Ke He HZ Zi〔2020〕143); the First People's Hospital of Zunyi Yanjiu Yu Shiyan Fazhan R&D (No. Yuan Ke Zi〔2020〕9).
Received  2022-08-30
Accepted  2022-12-12
DOI: 10.12015/issn.1674-8034.2023.01.007
Cite this article as: JIANG L, ZHANG J R, LIU H, et al. Rs-fMRI study of binary degree centrality and weighted degree centrality changes in the functional brain network in children with self-limited epilepsy with central temporal spikes[J]. Chin J Magn Reson Imaging, 2023, 14(1): 36-40, 60. DOI:10.12015/issn.1674-8034.2023.01.007.

[1]
SPECCHIO N, WIRRELL E C, SCHEFFER I E, et al. International League Against Epilepsy classification and definition of epilepsy syndromes with onset in childhood: position paper by the ILAE Task Force on Nosology and Definitions[J]. Epilepsia, 2022, 63(6): 1398-1442. DOI: 10.1111/epi.17241.
[2]
ROSS E E, STOYELL S M, KRAMER M A, et al. The natural history of seizures and neuropsychiatric symptoms in childhood epilepsy with centrotemporal spikes (CECTS)[J/OL]. Epilepsy Behav, 2020, 103(Pt A): 106437 [2022-08-29]. https://www.epilepsybehavior.com/article/S1525-5050(19)30540-2/fulltext. DOI: 10.1016/j.yebeh.2019.07.038.
[3]
DRYŻAŁOWSKI P, JÓŹWIAK S, FRANCKIEWICZ M, et al. Benign epilepsy with centrotemporal spikes - Current concepts of diagnosis and treatment[J]. Neurol Neurochir Pol, 2018, 52(6): 677-689. DOI: 10.1016/j.pjnns.2018.08.010.
[4]
OFER I, JACOBS J, JAISER N, et al. Cognitive and behavioral comorbidities in Rolandic epilepsy and their relation with default mode network's functional connectivity and organization[J]. Epilepsy Behav, 2018, 78: 179-186. DOI: 10.1016/j.yebeh.2017.10.013.
[5]
YANG J, GOHEL S, VACHHA B. Current methods and new directions in resting state fMRI[J]. Clin Imaging, 2020, 65: 47-53. DOI: 10.1016/j.clinimag.2020.04.004.
[6]
FU C, AISIKAER A, CHEN Z J, et al. Different functional network connectivity patterns in epilepsy: a rest-state fMRI study on mesial temporal lobe epilepsy and benign epilepsy with centrotemporal spike[J/OL]. Front Neurol, 2021, 12: 668856 [2022-08-29]. https://www.frontiersin.org/articles/10.3389/fneur.2021.668856/full. DOI: 10.3389/fneur.2021.668856.
[7]
ROYER J, BERNHARDT B C, LARIVIÈRE S, et al. Epilepsy and brain network hubs[J]. Epilepsia, 2022, 63(3): 537-550. DOI: 10.1111/epi.17171.
[8]
LUO C, YANG F, DENG J Y, et al. Altered functional and effective connectivity in anticorrelated intrinsic networks in children with benign childhood epilepsy with centrotemporal spikes[J/OL]. Medicine (Baltimore), 2016, 95(24): e3831 [2022-08-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4998445/. DOI: 10.1097/MD.0000000000003831.
[9]
LI Z Z, ZHANG J J, WANG F Q, et al. Surface-based morphometry study of the brain in benign childhood epilepsy with centrotemporal spikes[J/OL]. Ann Transl Med, 2020, 8(18): 1150 [2022-08-29]. https://atm.amegroups.com/article/view/51545/html. DOI: 10.21037/atm-20-5845.
[10]
BULLMORE E, SPORNS O. Complex brain networks: graph theoretical analysis of structural and functional systems[J]. Nat Rev Neurosci, 2009, 10(3): 186-198. DOI: 10.1038/nrn2575.
[11]
BASSETT D S, BULLMORE E T. Small-world brain networks revisited[J]. Neuroscientist, 2017, 23(5): 499-516. DOI: 10.1177/1073858416667720.
[12]
LI R, WANG L C, CHEN H, et al. Abnormal dynamics of functional connectivity density in children with benign epilepsy with centrotemporal spikes[J/OL]. Brain imaging and Behavior, 2019, 13(4): 985-994. [2022-08-29]. https://pubmed.ncbi.nlm.nih.gov/29956102/. DOI: 10.1007/s11682-018-9914-0.
[13]
XIAO F L, LEI D, AN D M, et al. Functional brain connectome and sensorimotor networks in rolandic epilepsy[J]. Epilepsy Res, 2015, 113: 113-125. DOI: 10.1016/j.eplepsyres.2015.03.015.
[14]
STAM C J. Modern network science of neurological disorders[J/OL]. Nature reviews. Neuroscience, 2014, 15(10): 683-695 [2022-07-08]. https://pubmed.ncbi.nlm.nih.gov/25186238/. DOI: 10.1038/nrn3801.
[15]
JI G J, YU Y, MIAO H H, et al. Decreased network efficiency in benign epilepsy with centrotemporal spikes[J]. Radiology, 2017, 283(1): 186-194. DOI: 10.1148/radiol.2016160422.
[16]
WANG X, JIAO D, ZHANG X, et al. Altered degree centrality in childhood absence epilepsy: a resting-state fMRI study[J]. J Neurol Sci, 2017, 373: 274-279. DOI: 10.1016/j.jns.2016.12.054.
[17]
VAN DELLEN E, DOUW L, HILLEBRAND A, et al. Epilepsy surgery outcome and functional network alterations in longitudinal MEG: a minimum spanning tree analysis[J]. Neuroimage, 2014, 86: 354-363. DOI: 10.1016/j.neuroimage.2013.10.010.
[18]
LI R, LIAO W, YU Y Y, et al. Differential patterns of dynamic functional connectivity variability of striato-cortical circuitry in children with benign epilepsy with centrotemporal spikes[J]. Hum Brain Mapp, 2018, 39(3): 1207-1217. DOI: 10.1002/hbm.23910.
[19]
ZHANG T T, SHI Q, LI Y H, et al. Frequency-dependent interictal neuromagnetic activities in children with benign epilepsy with centrotemporal spikes: a magnetoencephalography (MEG) study[J/OL]. Front Hum Neurosci, 2020, 14: 264 [2022-08-29]. https://www.frontiersin.org/articles/10.3389/fnhum.2020.00264/full. DOI: 10.3389/fnhum.2020.00264.
[20]
CHENG C H, WANG P N, MAO H F, et al. Subjective cognitive decline detected by the oscillatory connectivity in the default mode network: a magnetoencephalographic study[J]. Aging (Albany NY), 2020, 12(4): 3911-3925. DOI: 10.18632/aging.102859.
[21]
LI Y H, SUN Y L, ZHANG T T, et al. The relationship between epilepsy and cognitive function in benign childhood epilepsy with centrotemporal spikes[J/OL]. Brain Behav, 2020, 10(12): e01854 [2022-08-29]. https://onlinelibrary.wiley.com/doi/full/10.1002/brb3.1854.
[22]
ZENG H W, RAMOS C G, NAIR V A, et al. Regional homogeneity (ReHo) changes in new onset versus chronic benign epilepsy of childhood with centrotemporal spikes (BECTS): a resting state fMRI study[J]. Epilepsy Res, 2015, 116: 79-85. DOI: 10.1016/j.eplepsyres.2015.06.017.
[23]
JIANG S S, LUO C, HUANG Y, et al. Altered static and dynamic spontaneous neural activity in drug-Naïve and drug-receiving benign childhood epilepsy with centrotemporal spikes[J/OL]. Front Hum Neurosci, 2020, 14: 361 [2022-08-29]. https://www.frontiersin.org/articles/10.3389/fnhum.2020.00361/full. DOI: 10.3389/fnhum.2020.00361.
[24]
GARCIA-RAMOS C, DABBS K, LIN J J, et al. Network analysis of prospective brain development in youth with benign epilepsy with centrotemporal spikes and its relationship to cognition[J]. Epilepsia, 2019, 60(9): 1838-1848. DOI: 10.1111/epi.16290.
[25]
KWON H, CHINAPPEN D M, HUANG J F, et al. Transient, developmental functional and structural connectivity abnormalities in the thalamocortical motor network in Rolandic epilepsy[J/OL]. Neuroimage Clin, 2022, 35: 103102 [2022-08-29]. https://www.sciencedirect.com/science/article/pii/S221315822200167X. DOI: 10.1016/j.nicl.2022.103102.
[26]
KNOWLES J K, XU H J, SOANE C, et al. Maladaptive myelination promotes generalized epilepsy progression[J]. Nat Neurosci, 2022, 25(5): 596-606. DOI: 10.1038/s41593-022-01052-2.
[27]
YANG T H, REN J C, ZHANG Y Y, et al. Pretreatment topological disruptions of whole-brain networks exist in childhood absence epilepsy: a resting-state EEG-fMRI study[J/OL]. Epilepsy Res, 2022, 182: 106909 [2022-08-29]. https://www.sciencedirect.com/science/article/abs/pii/S0920121122000602. DOI: 10.1016/j.eplepsyres.2022.106909.
[28]
WU Y, JI G J, ZANG Y F, et al. Local activity and causal connectivity in children with benign epilepsy with centrotemporal spikes[J/OL]. PLoS One, 2015, 10(7): e0134361 [2022-08-29]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0134361. DOI: 10.1371/journal.pone.0134361.
[29]
XU Y, XU Q, ZHANG Q R, et al. Influence of epileptogenic region on brain structural changes in Rolandic epilepsy[J]. Brain Imaging Behav, 2022, 16(1): 424-434. DOI: 10.1007/s11682-021-00517-5.

PREV Research progress of chemical exchange saturation transfer magnetic resonance imaging in neurodegenerative disease
NEXT Study on brain function changes in persistent postural-perceptual dizziness based on resting state functional magnetic resonance imaging
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn