Share:
Share this content in WeChat
X
Clinical Article
Amplitude of low-frequency fluctuation and regional homogeneity of rs-fMRI in patients with unilateral sudden sensorineural hearing loss
ZHANG Jiajia  LIANG Junjie  WANG Xinru  SHI Anni  LI Yang  BAI Peng 

Cite this article as: ZHANG J J, LIANG J J, WANG X R, et al. Amplitude of low-frequency fluctuation and regional homogeneity of rs-fMRI in patients with unilateral sudden sensorineural hearing loss[J]. Chin J Magn Reson Imaging, 2023, 14(1): 48-53. DOI:10.12015/issn.1674-8034.2023.01.009.


[Abstract] Objective To explore the patients with unilateral sudden sensorineural hearing loss (SSNHL) at the acute stage using resting-state functional magnetic resonance imaging (rs-fMRI) technique with amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo).Materials and Methods A total of 23 patients with unilateral SSNHL at the acute stage and 18 matched healthy controls were selected for rs-fMRI scanning. ALFF and ReHo methods were used to analyze the changes of internal brain activity in patients with unilateral SSNHL, and the correlation between ALFF and ReHo values of brain regions with statistically significant differences and clinical correlation scores were analyzed.Results Compared with the healthy control group, the ALFF value of patients with unilateral SSNHL increased in ipsilateral middle temporal gyrus, insula, superior marginal gyrus and contralateral inferior frontal gyrus, while decreased in contralateral fusiform gyrus, middle temporal gyrus and posterior central gyrus (P<0.001). ReHo increased in the contralateral inferior cerebellar lobe, ipsilateral middle temporal gyrus and middle frontal gyrus, while decreased in ipsilateral superior occipital gyrus and contralateral middle frontal gyrus (P<0.001). ALFF values of ipsilateral middle temporal gyrus and superior marginal gyrus were positively correlated with Pure Tone Audiometry (PTA) and Mini-Mental State Examination (MMSE) scores (P<0.05). The ReHo value of the left middle temporal gyrus was positively correlated with PTA results, and the ReHo value of the left middle frontal gyrus was positively correlated with MMSE score (P<0.05). There was a positive correlation between the ReHo value of left occipital loop and Self-rating Depression Scale (SDS) score (P<0.05).Conclusions In the patients with unilateral SSNHL in resting state, there are different degree of brain functional activity changes in auditory and non-auditory parts, mainly involving default network, prominent network and visual and auditory network, which may be related to the pathogenesis of SSNHL.
[Keywords] sensorineural hearing loss;sudden sensorineural hearing loss;magnetic resonance imaging;imaging biomarkers;amplitude of low-frequency fluctuation;regional homogeneity

ZHANG Jiajia1   LIANG Junjie1   WANG Xinru1   SHI Anni2   LI Yang2   BAI Peng1*  

1 Department of Acupuncture, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China

2 Department of Acupuncture, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China

Corresponding author: Bai P, E-mail: baipeng1978@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Natural Science Foundation of Beijing (No. 7222283); National TCM Innovation Backbone Talents (National TCM Education Letter No.〔2019〕128).
Received  2022-08-30
Accepted  2022-11-29
DOI: 10.12015/issn.1674-8034.2023.01.009
Cite this article as: ZHANG J J, LIANG J J, WANG X R, et al. Amplitude of low-frequency fluctuation and regional homogeneity of rs-fMRI in patients with unilateral sudden sensorineural hearing loss[J]. Chin J Magn Reson Imaging, 2023, 14(1): 48-53. DOI:10.12015/issn.1674-8034.2023.01.009.

[1]
Chinese Journal of Otolaryngology Head and Neck Surgery Editorial Board, Chinese Medical Association Otolaryngology Head and Neck Surgery Branch. Guidelines for diagnosis and treatment of sudden deafness (Jinan, 2005)[J]. Chin J Otorhinolaryngol Head Neck Surg, 2006, 41(5): 325.
[2]
CHANDRASEKHAR S S, TSAI DO B S, SCHWARTZ S R, et al. Clinical practice guideline: sudden hearing loss (update)[J]. Otolaryngol Head Neck Surg, 2019, 161(1_suppl): S1-S45. DOI: 10.1177/0194599819859885.
[3]
XIE W, DAI Q Q, LIU J G, et al. Analysis of clinical and laboratory findings of idiopathic sudden sensorineural hearing loss[J/OL]. Sci Rep, 2020, 10: 6057 [2022-08-29]. https://doi.org/10.1038/s41598-020-63046-z. DOI: 10.1038/s41598-020-63046-z.
[4]
MIRIAN C, OVESEN T. Intratympanic vs systemic corticosteroids in first-line treatment of idiopathic sudden sensorineural hearing loss: a systematic review and meta-analysis[J]. JAMA Otolaryngol Head Neck Surg, 2020, 146(5): 421-428. DOI: 10.1001/jamaoto.2020.0047.
[5]
SI X, YU Z Y, REN X L, et al. Efficacy and safety of standardized Ginkgo biloba L. leaves extract as an adjuvant therapy for sudden sensorineural hearing loss: a systematic review and meta-analysis[J/OL]. J Ethnopharmacol, 2022, 282: 114587 [2022-08-29]. https://doi.org/10.1016/j.jep.2021. DOI: 10.1016/j.jep.2021.114587.
[6]
TENG J S, LI S J, LI X J, et al. Correlation between sudden deafness and blood lipid profile, immunoglobulin levels, and coagulation function[J]. Chin J Ophthalmol Otorhinolaryngol, 2022, 22(5): 488-491, 497. DOI: 10.14166/j.issn.1671-2420.2022.05.012.
[7]
WANG X X, DIAO M F. Advance in the etiology and pathogenesis of sudden sensorineural hearing loss[J]. Int J Otolaryngol Head Neck Surg, 2021(6): 360-363, 367.
[8]
ALZAHER M, VANNSON N, DEGUINE O, et al. Brain plasticity and hearing disorders[J]. Rev Neurol (Paris), 2021, 177(9): 1121-1132. DOI: 10.1016/j.neurol.2021.09.004.
[9]
FAN W L, ZHANG W J, LI J, et al. Altered contralateral auditory cortical morphology in unilateral sudden sensorineural hearing loss[J]. Otol Neurotol, 2015, 36(10): 1622-1627. DOI: 10.1097/MAO.0000000000000892.
[10]
WOLAK T, CIEŚLA K, PLUTA A, et al. Altered functional connectivity in patients with sloping sensorineural hearing loss[J/OL]. Front Hum Neurosci, 2019, 13: 284 [2022-07-01]. https://doi.org/10.3389/fnhum.2019.00284. DOI: 10.3389/fnhum.2019.00284.
[11]
MINOSSE S, GARACI F, MARTINO F, et al. Global and local reorganization of brain network connectivity in sudden sensorineural hearing loss[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2020, 2020: 1730-1733. DOI: 10.1109/EMBC44109.2020.9175688.
[12]
HAN Q, LIU D H, WANG Y, et al. Changes of local brain neural function activity in subjective tinnitus based on resting-state functional MRI[J]. Chin J Magn Reson Imaging, 2018, 9(7): 481-486. DOI: 10.12015/issn.1674-8034.2018.07.001.
[13]
YAN C G, WANG X D, ZUO X N, et al. DPABI: data processing & analysis for (resting-state) brain imaging[J]. Neuroinformatics, 2016, 14(3): 339-351. DOI: 10.1007/s12021-016-9299-4.
[14]
PANG X Q, ZENG Z S, PANG X A, et al. Study on resting state fMRI of sudden deafness based on ALFF and ReHo[J]. J Guangxi Med Univ, 2020, 37(6): 1130-1134. DOI: 10.16190/j.cnki.45-1211/r.2020.06.024.
[15]
LIU Z, LU S M, FAN W L, et al. Rs-fMRI study of the change of intrinsic brain activity in unilateral sudden sensorineural hearing loss[J]. Radiol Pract, 2018, 33(9): 888-892. DOI: 10.13609/j.cnki.1000-0313.2018.09.002.
[16]
LIU X T, ZHU Y L, XI C H, et al. Research progress of island function[J]. Chin J Neurol, 2017, 50(2): 157-160. DOI: 10.3760/cma.j.issn.1006-7876.2017.02.019.
[17]
CHEN X H, ZHANG J, LI C. Assessment of functional connectivity in patients with chronic tinnitus by resting-state functional MRI[J]. Radiol Pract, 2020, 35(12): 1507-1512. DOI: 10.13609/j.cnki.1000-0313.2020.12.003.
[18]
XU X M, JIAO Y, TANG T Y, et al. Altered spatial and temporal brain connectivity in the salience network of sensorineural hearing loss and tinnitus[J/OL]. Front Neurosci, 2019, 13: 246 [2022-07-01]. https://doi.org/10.3389/fnins.2019.00246. DOI: 10.3389/fnins.2019.00246.
[19]
ZHU X, HUANG Z C, ZHANG P P, et al. A resting-state functional MRI study on default mode network in patients with long-term unilateral sensorineural hearing loss[J]. Chin J Otol, 2015, 13(3): 511-515. DOI: 10.3969/j.issn.1672-2922.2015.03.029.
[20]
CHEN J W, HU B, QIN P, et al. Altered brain activity and functional connectivity in unilateral sudden sensorineural hearing loss[J/OL]. Neural Plast, 2020, 2020: 9460364 [2022-07-01]. https://doi.org/10.1155/2020/9460364. DOI: 10.1155/2020/9460364.
[21]
SHANG Y, HINKLEY L B, CAI C, et al. Functional and structural brain plasticity in adult onset single-sided deafness[J/OL]. Front Hum Neurosci, 2018, 12: 474 [2022-07-01]. https://doi.org/10.3389/fnhum.2018.00474. DOI: 10.3389/fnhum.2018.00474.
[22]
DU Y L, LIU J X, KANG W, et al. The role of the cerebellum in auditory process and tinnitus[J]. J Clin Otorhinolaryngol Head Neck Surg, 2015, 29(13): 1231-1234. DOI: 10.13201/j.issn.1001-1781.2015.13.026.
[23]
SATHYANESAN A, ZHOU J, SCAFIDI J, et al. Emerging connections between cerebellar development, behaviour and complex brain disorders[J]. Nat Rev Neurosci, 2019, 20(5): 298-313. DOI: 10.1038/s41583-019-0152-2.
[24]
CHEN Y C, LI X W, LIU L J, et al. Tinnitus and hyperacusis involve hyperactivity and enhanced connectivity in auditory-limbic-arousal-cerebellar network[J/OL]. eLife, 2015, 4: e06576 [2022-07-01]. https://doi.org/10.7554/eLife.06576. DOI: 10.7554/eLife.06576.
[25]
BOYEN K, DE KLEINE E, VAN DIJK P, et al. Tinnitus-related dissociation between cortical and subcortical neural activity in humans with mild to moderate sensorineural hearing loss[J/OL]. Hear Res, 2014, 312: 48-59 [2022-07-01]. https://doi.org/10.1016/j.heares.2014.03.001. DOI: 10.1016/j.heares.2014.03.001.
[26]
HU J, CUI J, XU J J, et al. The neural mechanisms of tinnitus: a perspective from functional magnetic resonance imaging[J/OL]. Front Neurosci, 2021, 15: 621145 [2022-07-01]. https://doi.org/10.3389/fnins.2021.621145. DOI: 10.3389/fnins.2021.621145.
[27]
MANNO F A M, RODRÍGUEZ-CRUCES R, KUMAR R, et al. Hearing loss impacts gray and white matter across the lifespan: systematic review, meta-analysis and meta-regression[J/OL]. NeuroImage, 2021, 231: 117826 [2022-07-01]. https://doi.org/10.1016/j.neuroimage.2021.117826. DOI: 10.1016/j.neuroimage.2021.117826.
[28]
ZOU Y, MA H, LIU B, et al. Disrupted topological organization in white matter networks in unilateral sudden sensorineural hearing loss[J/OL]. Front Neurosci, 2021, 15: 666651 [2022-07-01]. https://doi.org/10.3389/fnins.2021.666651. DOI: 10.3389/fnins.2021.666651.
[29]
IBRAHIM L A, MESIK L, JI X Y, et al. Cross-modality sharpening of visual cortical processing through layer-1-mediated inhibition and disinhibition[J]. Neuron, 2016, 89(5): 1031-1045. DOI: 10.1016/j.neuron.2016.01.027.
[30]
ZHANG G Y, YANG M, LIU B, et al. Changes of the directional brain networks related with brain plasticity in patients with long-term unilateral sensorineural hearing loss[J/OL]. Neuroscience, 2016, 313: 149-161 [2022-07-01]. https://doi.org/10.1016/j.neuroscience.2015.11.042. DOI: 10.1016/j.neuroscience.2015.11.042.
[31]
SHANG Y Y, HINKLEY L B, CAI C, et al. Cross-modal plasticity in adult single-sided deafness revealed by alpha band resting-state functional connectivity[J/OL]. NeuroImage, 2020, 207: 116376 [2022-07-01]. https://doi.org/10.1016/j.neuroimage.2019. DOI: 10.1016/j.neuroimage.2019.116376.
[32]
LIU B, FENG Y, YANG M, et al. Functional connectivity in patients with sensorineural hearing loss using resting-state MRI[J]. Am J Audiol, 2015, 24(2): 145-152. DOI: 10.1044/2015_AJA-13-0068.
[33]
LAI C H, WU Y T. Changes in regional homogeneity of parieto-temporal regions in panic disorder patients who achieved remission with antidepressant treatment[J]. J Affect Disord, 2013, 151(2): 709-714. DOI: 10.1016/j.jad.2013.08.006.

PREV Study on brain function changes in persistent postural-perceptual dizziness based on resting state functional magnetic resonance imaging
NEXT Classification and early diagnosis of children viral encephalitis on MRI images based on convolutional neural network
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn