Share:
Share this content in WeChat
X
Clinical Article
Value of 3D arterial spin labeling in early diagnosis and prognostic grouping of full-term neonatal hypoxic-ischemic encephalopathy
LIU Chang  JI Haixia  TIAN Yanghua  HOU Weishu  YIN Dawei  DENG Kexue 

Cite this article as: LIU C, JI H X, TIAN Y H, et al. Value of 3D arterial spin labeling in early diagnosis and prognostic grouping of full-term neonatal hypoxic-ischemic encephalopathy[J]. Chin J Magn Reson Imaging, 2023, 14(1): 61-66, 76. DOI:10.12015/issn.1674-8034.2023.01.011.


[Abstract] Objective To investigate the value of 3D arterial spin labeling (3D ASL) perfusion imaging and diffusion weighted imaging (DWI) for the early diagnosis of hypoxic-ischemic encephalopathy (HIE) in term neonates and the predictive value of 3D ASL for patient prognosis.Materials and Methods A total of 40 cases of full-term neonates clinically diagnosed with HIE in our hospital from December 2017 to May 2022 and 40 control group were selected. All HIE neonates were divided into favourable outcome and adverse outcome groups according to their prognosis,and all subjects underwent 3D ASL and DWI simultaneously to compare cerebral blood flow (CBF) and apparent diffusion coefficient (ADC) in each region of interest and analyze the agreement. The areas of interest included bilateral basal ganglia, thalamus, and frontal white matter, and the final average was bilaterally taken.To investigate the correlation between CBF value of HIE in neonates and Neonatal Behavioral Neurological Assessment (NBNA), the relationship between early changes of CBF value and prognosis of neonates with HIE.Results (1) The CBF values of basal ganglia and thalamus in the poor prognosis group were higher than those in the good prognosis group, and the difference was statistically significant (P<0.001); (2) The area under the ROC curve for CBF values was 0.973, and the specificity and sensitivity of CBF values were 90.2% and 97.5%; the area under the receiver operating characteristic (ROC) curve for ADC values was 0.881, and the sensitivity and specificity were 82.5% and 92.7%; (3) CBF values in the basal ganglia and thalamus were highly correlated with NBNA scores (r=-0.8196, P<0.001; r=-0.8504, P<0.001).Conclusions ASL findings within 3 days after birth in full-term neonates were highly correlated with NBNA scores. It can diagnose HIE early and predict the outcome of functional brain damage with better diagnostic efficacy than DWI.
[Keywords] neonatus;hypoxic ischemia encephalopathy;magnetic resonance imaging;diffusion weighted imaging;arterial spin labeling;cerebral blood flow;neonatal behavioral neurological assessment;prognosis;early diagnosis;prediction

LIU Chang1   JI Haixia2   TIAN Yanghua2   HOU Weishu3   YIN Dawei1   DENG Kexue1*  

1 Department of Radiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China

2 Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China

3 Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China

Corresponding author: Deng KX, E-mail: dengkexue-anhui@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Found of China (No. 32071054); Natural Science Foundation of Anhui Province (No. 2008085QH381).
Received  2022-07-28
Accepted  2022-11-10
DOI: 10.12015/issn.1674-8034.2023.01.011
Cite this article as: LIU C, JI H X, TIAN Y H, et al. Value of 3D arterial spin labeling in early diagnosis and prognostic grouping of full-term neonatal hypoxic-ischemic encephalopathy[J]. Chin J Magn Reson Imaging, 2023, 14(1): 61-66, 76. DOI:10.12015/issn.1674-8034.2023.01.011.

[1]
VICTOR S, ROCHA-FERREIRA E, RAHIM A, et al. New possibilities for neuroprotection in neonatal hypoxic-ischemic encephalopathy[J]. Eur J Pediatr, 2022, 181(3): 875-887. DOI: 10.1007/s00431-021-04320-8.
[2]
MODISETT A K, PATEL R M, JERNIGAN S M, et al. Patterns of acute kidney and hepatic injury and association with adverse outcomes in infants undergoing therapeutic hypothermia for hypoxic ischemic encephalopathy[J]. Perinatol, 2022, 42(10): 1361-1367. DOI: 10.1038/s41372-022-01394-6.
[3]
SALAS J, REDDY N, ORRU E, et al. The role of diffusion tensor imaging in detecting hippocampal injury following neonatal hypoxic-ischemic encephalopathy[J]. Neuroimaging, 2019, 29(2): 252-259. DOI: 10.1111/jon.12572.
[4]
BARTA H, JERMENDY A, KOVACS L, et al. Predictive performance and metabolite dynamics of proton MR spectroscopy in neonatal hypoxic-ischemic encephalopathy[J]. Pediatr Res, 2022, 91(3): 581-589. DOI: 10.1038/s41390-021-01626-z.
[5]
Neonatal Group, Pediatrics Branch of Chinese Medical Association. Diagnostic criteria for neonatal hypoxic-ischemic encephalopathy[J]. Chin J Pediatr, 2005, 43(8): 584-584. DOI: 10.3760/j.issn:0578-1310.2005.08.007.
[6]
MENG L, WANG Q, LI Y, et al. Diagnostic performance of arterial spin-labeled perfusion imaging and diffusion-weighted imaging in full-term neonatal hypoxic-ischemic encephalopathy[J]. Integr Neurosci, 2021, 20(4): 985-991. DOI: 10.31083/j.jin2004099.
[7]
TIERRADENTRO-GARCÍA L O, SAADE-LEMUS S, FREEMAN C, et al. Cerebral blood flow of the neonatalbrain after hypoxic-ischemic injury[J]. Am J Perinatol, 2021, 14(2): 378-386. DOI: 10.1055/s-0041-1731278.
[8]
FAN X, WANG H, ZHANG L, et al. Neuroprotection of hypoxic/ischemic preconditioning in neonatal brain with hypoxic-ischemic injury[J]. Rev Neurosci, 2020, 21(11): 438-342. DOI: 10.1515/revneuro-2020-0024.
[9]
FAVIÉ L M A, GROENENDAAL F, VAN DEN BROEK M P H, et al. Pharmacokinetics of morphine in encephalopathic neonates treated with therapeutic hypothermia[J]. PLOS One, 2019, 14(2): 211-217. DOI: 10.1371/journal.pone.0211910.
[10]
BEDNAREK N, MATHUR A, INDER T, et al. Impact of therapeutic hypothermia on MRI diffusion changes in neonatal encephalopathy[J]. Neurology, 2012, 78(18): 1420-1427. DOI: 10.1212/WNL.0b013e318253d589.
[11]
MENDLER M R, MENDLER I, HASSAN M A, et al. Predictive value of thompson-score for long-term neurological and cognitive outcome in term newborns with perinatal asphyxia and hypoxic-Ischemic encephalopathy undergoing controlled hypother mia treatment[J]. Neonatology, 2018, 114(4): 341-347. DOI: 10.1159/000490721.
[12]
ILVES P, LINTROP M, METSVAHT T, et al. Cerebral blood-flow velocities in predicting outcome of asphyxiated newborn infants[J]. Acta Paediatr, 2004, 93(4): 523-528. DOI: 10.1080/08035250410024745
[13]
WANG J, LI J, YIN X, et al. Cerebral hemodynamics of hypoxic-ischemic encephalopathy neonates at different ages detected by arterial spin labeling imaging[J]. Clin Hemorheol Microcirc, 2022, 81(4): 271-279. DOI: 10.3233/CH-211324.
[14]
CARRASCO M, PERIN J, JENNINGS J M, et al. Cerebral Autoregulation and Conventional and Diffusion Tensor Imaging Magnetic Resonance Imaging in Neonatal Hypoxic-Ischemic Encephalopathy[J]. Pediatr Neurol, 2018, 82: 36-43. DOI: 10.1016/j.pediatrneurol.2018.02.004.
[15]
WINTERMARK P, MOESSINGER A C, GUDINCHET F, et al. Perfusion-weighted magnetic resonance imaging patterns of hypoxic-ischemic encephalopathy in term neonates[J]. Magn Reson Imaging, 2008, 28(4): 1019-1025. DOI: 10.1002/jmri.21525.
[16]
ZUN Z, LIMPEROPOULOS C. Placental perfusion imaging using velocity-selective arterial spin labeling[J]. Magn Reson Med, 2018, 80(3): 1036-1047. DOI: 10.1002/mrm.27100.
[17]
SUMAN G, RUSIN J A, LEBEL R M, et al. Multidelay arterial spin labeling MRI in the assessment of cerebral blood flow: preliminary clinical experience in pediatrics[J]. Pediatr Neurol, 2020, 103: 79-83. DOI: 10.1016/j.pediatrneurol.2019.08.005.
[18]
ZHENG Q, FREEMAN C W, HWANG M. Sex-related differences in arterial spin-labelled perfusion of metabolically active brain structures in neonatal hypoxic-ischaemic encephalopathy[J]. Clin Radiol, 2021, 76(5): 342-347. DOI: 10.1016/j.crad.2020.12.026.
[19]
CAO J, MU Y, XU X, et al. Cerebral perfusion changes of the basal ganglia and thalami in full-term neonates with hypoxic-ischaemic encephalopathy: a three-dimensional pseudo continuous arterial spin labelling perfusion magnetic resonance imaging study[J]. Pediatr Radiol, 2022, 52(8): 1559-1567. DOI: 10.1007/s00247-022-05344-4.
[20]
LI Y, WISNOWSKI J L, CHALAK L, et al. Mild hypoxic-ischemic encephalopathy (HIE): timing and pattern of MRI brain injury[J]. Pediatr Res, 2022, 22(11): 173-181. DOI: 10.1038/s41390-022-02026-7.
[21]
DE VIS J B, HENDRIKSE J, PETERSEN E T, et al. Arterial spin-labelling perfusion MRI and outcome in neonates with hypoxic-ischemic encephalopathy[J]. Eur Radiol, 2015, 25(1): 113-121. DOI: 10.1007/s00330-014-3352-1.
[22]
GANO D, CHAU V, POSKITT K J, et al. Evolution of pattern of injury and quantitative MRI on days 1 and 3 in term newborns with hypoxic-ischemic encephalopathy[J]. Pediatr Res, 2013, 74(1): 82-87. DOI: 10.1038/pr.2013.69.
[23]
ALDERLIESTEN T, DE VRIES L S, BENDERS M J, et al. MR imaging and outcome of term neonates with perinatal asphyxia: value of diffusion-weighted MR imaging and ¹H MR spectroscopy[J]. Radiology, 2011, 261(1): 235-242. DOI: 10.1148/radiol.11110213.
[24]
LEE Y K, PENN A, PATEL M, et al. Hypothermia-treated neonates with hypoxic-ischemic encephalopathy: optimal timing of quantitative ADC measurement to predict disease severity[J]. Neuroradio, 2017, 30(1): 28-35. DOI: 10.1177/1971400916678229.
[25]
JUNG D E, RITACCO D G, NORDLI D R, et al. Early Anatomical Injury Patterns Predict Epilepsy in Head Cooled Neonates With Hypoxic-Ischemic Encephalopathy[J]. Pediatr Neurol, 2015, 53(2): 135-140. DOI: 10.1016/j.pediatrneurol.2015.04.009.
[26]
BEVERS M B, BATTEY T W K, OSTWALDT A C, et al. Apparent diffusion coefficient signal intensity ratio predicts the effect of revascularization on ischemic cerebral edema[J]. Cerebrovasc Dis, 2018, 45(3-4): 93-100. DOI: 10.1159/000487406.
[27]
DE VIS J B, HENDRIKSE J, PETERSEN E T, et al. Arterial spin-labelling perfusion MRI and outcome in neonates with hypoxic-ischemic encephalopathy[J]. Eur Radiol, 2015, 25(1): 113-121. DOI: 10.1007/s00330-014-3352-1.
[28]
BOUDES E, GILBERT G, LEPPERT I R, et al. Measurement of brain perfusion in newborns: pulsed arterial spin labeling (PASL) versus pseudo-continuous arterial spin labeling (pCASL)[J]. Neuroimage Clin, 2014, 6: 126-133. DOI: 10.1016/j.nicl.2014.08.010.
[29]
ZHANG X, RONEN I, KAN H E, et al. Time-efficient measurement of multi-phase arterial spin labeling MR signal in white matter[J]. NMR Biomed, 2016, 29(11): 1519-1525. DOI: 10.1002/nbm.3603.
[30]
KUHASRI A, JAYATILAKE S, STEVENSON G, et al. Evaluation of neonatal cerebral perfusion using three-dimensional power Doppler ultrasound volumes[J]. Acta Paediatr, 2022, 111(3): 511-518. DOI: 10.1111/apa.16163.
[31]
LAKATOS A, KOLOSSVÁRY M, SZABÓ M, et al. Neurodevelopmental effect of intracranial hemorrhage observed in hypoxic ischemic brain injury in hypothermia-treated asphyxiated neonates-an MRI study[J/OL]. BMC Pediatr, 2019, 19(1): 430 [2022-07-27]. https://pubmed.ncbi.nlm.nih.gov/31718607/. DOI: 10.1186/s12887-019-1777-z.
[32]
GUO L, ZHANG Q, DING L, et al. Pseudo-continuous arterial spin labeling quantifies cerebral blood flow in patients with acute ischemic stroke and chronic lacunar stroke[J]. Clin Neurol Neurosurg, 2014, 125: 229-236. DOI: 10.1016/j.clineuro.2014.08.017.

PREV Classification and early diagnosis of children viral encephalitis on MRI images based on convolutional neural network
NEXT Study of cerebral nuclei and white matter fibers in neonatal acute bilirubin encephalopathy based on diffusion tensor imaging
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn