Share:
Share this content in WeChat
X
Clinical Article
Radiomics for the preoperative prediction of microvascular invasion in hepatocellular carcinoma: A systemic review and Meta-analysis
ZHANG Tong  WU Hui  HU He  GAO Kaihua  YANG Jiao 

Cite this article as: ZHANG T, WU H, HU H, et al. Radiomics for the preoperative prediction of microvascular invasion in hepatocellular carcinoma: A systemic review and Meta-analysis[J]. Chin J Magn Reson Imaging, 2023, 14(1): 82-88. DOI:10.12015/issn.1674-8034.2023.01.015.


[Abstract] Objective To evaluate the predictive power of radiomics models for preoperative evaluation of microvascular invasion (MVI) in hepatocellular carcinoma (HCC) by Meta analysis.Materials and Methods Comprehensive search of studies up to August 20, 2022, on preoperative prediction of liver cancer MVI by radiomics models were screened in PubMed, EMBASE, Cochrane Library, CNKI, and Wanfang Database. Data extraction and quality assessment of the retrieved studies were performed according to inclusion and exclusion criteria. We used the STATA version 16 to analyze the raw data, drew forest plots and summary receiver operating characteristic (SROC) curves, and conducted the subgroup analysis and sensitivity analysis to find the heterogeneity. Moreover, Deek's funnel plots were performed to assess publication bias.Results Thirty-two studies met our criteria and were included. There were 3059 patients, including 1339 with MVI and 1720 without MVI. For the predictive performance of radiomics models, the pooled sensitivity, specificity, and area under the curve (AUC) values were 81% (95% CI: 78%-84%), 82% (95% CI: 79%-85%), and 0.89 (95% CI: 0.85-0.91), respectively.Conclusions Radiomics models showed a promising prediction performance for predicting MVI in HCC. However, more high-quality studies are still needed for further feasibility validation and clinical translation.
[Keywords] hepatocellular carcinoma;microvascular invasion;radiomics;Meta-analysis;magnetic resonance imaging

ZHANG Tong   WU Hui*   HU He   GAO Kaihua   YANG Jiao  

Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China

Corresponding author: Wu H, E-mail: terrywuhui@sina.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Natural Science Foundation of Inner Mongolia Autonomous Region (No. 2021MS08026); the General Program of Inner Mongolia Medical University (No. YKD2021MS045).
Received  2022-09-19
Accepted  2022-12-21
DOI: 10.12015/issn.1674-8034.2023.01.015
Cite this article as: ZHANG T, WU H, HU H, et al. Radiomics for the preoperative prediction of microvascular invasion in hepatocellular carcinoma: A systemic review and Meta-analysis[J]. Chin J Magn Reson Imaging, 2023, 14(1): 82-88. DOI:10.12015/issn.1674-8034.2023.01.015.

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
HOFFMAN D, MEHTA N. Recurrence of hepatocellular carcinoma following liver transplantation[J]. Expert Rev Gastroenterol Hepatol, 2021, 15(1): 91-102. DOI: 10.1080/17474124.2021.1823213.
[3]
BRUIX J, GORES G J, MAZZAFERRO V. Hepatocellular carcinoma: clinical frontiers and perspectives[J]. Gut, 2014, 63(5): 844-855. DOI: 10.1136/gutjnl-2013-306627.
[4]
LLOVET J M, SCHWARTZ M, MAZZAFERRO V. Resection and liver transplantation for hepatocellular carcinoma[J]. Semin Liver Dis, 2005, 25(2): 181-200. DOI: 10.1055/s-2005-871198.
[5]
WU M C, TANG Z Y, LIU T H, et al. Evidence-based practice guidelines for the standardized pathological diagnosis of primary liver cancer in China(2015 update)[J]. J Clin Hepatol, 2015, 31(6): 833-839. DOI: 10.3969/j.issn.1001-5256.2015.06.004.
[6]
ZHANG X P, WANG K, WEI X B, et al. An Eastern Hepatobiliary Surgery Hospital Microvascular Invasion Scoring System in Predicting Prognosis of Patients with Hepatocellular Carcinoma and Microvascular Invasion After R0 Liver Resection: A Large-Scale, Multicenter Study[J/OL]. Oncologist, 2019, 24(12): e1476-e1488 [2022-08-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6975940/. DOI: 10.1634/theoncologist.2018-0868.
[7]
ZHANG X P, ZHOU T F, WANG Z H, et al. Association of preoperative hypercoagulability with poor prognosis in hepatocellular carcinoma patients with microvascular invasion after liver resection: a multicenter study[J]. Ann Surg Oncol, 2019, 26(12): 4117-4125. DOI: 10.1245/s10434-019-07504-7.
[8]
WANG H, WU M C, CONG W M. Microvascular invasion predicts a poor prognosis of solitary hepatocellular carcinoma up to 2 cm based on propensity score matching analysis[J]. Hepatol Res, 2019, 49(3): 344-354. DOI: 10.1111/hepr.13241.
[9]
LEE S, KIM S H, LEE J E, et al. Preoperative gadoxetic acid-enhanced MRI for predicting microvascular invasion in patients with single hepatocellular carcinoma[J]. J Hepatol, 2017, 67(3): 526-534. DOI: 10.1016/j.jhep.2017.04.024.
[10]
LEE S, KANG T W, SONG K D, et al. Effect of microvascular invasion risk on early recurrence of hepatocellular carcinoma after surgery and radiofrequency ablation[J]. Ann Surg, 2021, 273(3): 564-571. DOI: 10.1097/SLA.0000000000003268.
[11]
HYUN S H, EO J S, SONG B I, et al. Preoperative prediction of microvascular invasion of hepatocellular carcinoma using 18F-FDG PET/CT: a multicenter retrospective cohort study[J]. Eur J Nucl Med Mol Imaging, 2018, 45(5): 720-726. DOI: 10.1007/s00259-017-3880-4.
[12]
WANG W T, YANG L, YANG Z X, et al. Assessment of microvascular invasion of hepatocellular carcinoma with diffusion kurtosis imaging[J]. Radiology, 2018, 286(2): 571-580. DOI: 10.1148/radiol.2017170515.
[13]
WEI Y, HUANG Z X, TANG H H, et al. IVIM improves preoperative assessment of microvascular invasion in HCC[J]. Eur Radiol, 2019, 29(10): 5403-5414. DOI: 10.1007/s00330-019-06088-w.
[14]
MCINNES M D F, MOHER D, THOMBS B D, et al. Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: the PRISMA-DTA statement[J]. JAMA, 2018, 319(4): 388-396. DOI: 10.1001/jama.2017.19163.
[15]
WHITING P F, RUTJES A W, WESTWOOD M E, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies[J]. Ann Intern Med, 2011, 155(8): 529-536. DOI: 10.7326/0003-4819-155-8-201110180-00009.
[16]
HIGGINS J P T, THOMPSON S G, DEEKS J J, et al. Measuring inconsistency in meta-analyses[J]. BMJ, 2003, 327(7414): 557-560. DOI: 10.1136/bmj.327.7414.557.
[17]
DUVAL S, TWEEDIE R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis[J]. Biometrics, 2000, 56(2): 455-463. DOI: 10.1111/j.0006-341x.2000.00455.x.
[18]
ZHENG J, CHAKRABORTY J, CHAPMAN W C, et al. Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma Using Quantitative Image Analysis[J/OL]. J Am Coll Surg. 2017, 225(6): 778-788.e1 [2022-08-20]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5705269/. DOI: 10.1016/j.jamcollsurg.2017.09.003.
[19]
PENG J, ZHANG J, ZHANG Q F, et al. A radiomics nomogram for preoperative prediction of microvascular invasion risk in hepatitis B virus-related hepatocellular carcinoma[J]. Diagn Interv Radiol, 2018, 24(3): 121-127. DOI: 10.5152/dir.2018.17467.
[20]
FENG S T, JIA Y M, LIAO B, et al. Preoperative prediction of microvascular invasion in hepatocellular cancer: a radiomics model using Gd-EOB-DTPA-enhanced MRI[J]. Eur Radiol, 2019, 29(9): 4648-4659. DOI: 10.1007/s00330-018-5935-8.
[21]
MA X H, WEI J W, GU D S, et al. Preoperative radiomics nomogram for microvascular invasion prediction in hepatocellular carcinoma using contrast-enhanced CT[J]. Eur Radiol, 2019, 29(7): 3595-3605. DOI: 10.1007/s00330-018-5985-y.
[22]
NI M, ZHOU X, LV Q, et al. Radiomics models for diagnosing microvascular invasion in hepatocellular carcinoma: which model is the best model?[J/OL]. Cancer Imaging, 2019, 19(1): 60 [2022-08-20]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6712704/. DOI: 10.1186/s40644-019-0249-x.
[23]
WANG H Q, ZENG M S, RAO S X, et al. Radiomic features to predict microvascular invasion in hepatocellular carcinoma based on conventional MRI: preliminary findings[J]. Chin J Radiol, 2019, 53(4): 292-298. DOI: 10.3760/cma.j.issn.1005?1201.2019.04.010.
[24]
XU X, ZHANG H L, LIU Q P, et al. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma[J]. J Hepatol, 2019, 70(6): 1133-1144. DOI: 10.1016/j.jhep.2019.02.023.
[25]
YANG L, GU D S, WEI J W, et al. A radiomics nomogram for preoperative prediction of microvascular invasion in hepatocellular carcinoma[J]. Liver Cancer, 2019, 8(5): 373-386. DOI: 10.1159/000494099.
[26]
ZHANG R, XU L, WEN X, et al. A nomogram based on bi-regional radiomics features from multimodal magnetic resonance imaging for preoperative prediction of microvascular invasion in hepatocellular carcinoma[J]. Quant Imaging Med Surg, 2019, 9(9): 1503-1515. DOI: 10.21037/qims.2019.09.07.
[27]
ZHU Y J, FENG B, WANG S, et al. Model-based three-dimensional texture analysis of contrast-enhanced magnetic resonance imaging as a potential tool for preoperative prediction of microvascular invasion in hepatocellular carcinoma[J]. Oncol Lett, 2019, 18(1): 720-732. DOI: 10.3892/ol.2019.10378.
[28]
ZHANG X, RUAN S, XIAO W, et al. Contrast-enhanced CT radiomics for preoperative evaluation of microvascular invasion in hepatocellular carcinoma: A two-center study[J/OL]. Clin Transl Med, 2020, 10(2): e111 [2022-08-20]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7403665/. DOI: 10.1002/ctm2.111.
[29]
CHONG H H, YANG L, SHENG R F, et al. Multi-scale and multi-parametric radiomics of gadoxetate disodium-enhanced MRI predicts microvascular invasion and outcome in patients with solitary hepatocellular carcinoma≤5 cm[J]. Eur Radiol, 2021, 31(7): 4824-4838. DOI: 10.1007/s00330-020-07601-2.
[30]
DAI H J, LU M H, HUANG B S, et al. Considerable effects of imaging sequences, feature extraction, feature selection, and classifiers on radiomics-based prediction of microvascular invasion in hepatocellular carcinoma using magnetic resonance imaging[J]. Quant Imaging Med Surg, 2021, 11(5): 1836-1853. DOI: 10.21037/qims-20-218.
[31]
JIANG Y Q, CAO S E, CAO S L, et al. Preoperative identification of microvascular invasion in hepatocellular carcinoma by XGBoost and deep learning[J]. J Cancer Res Clin Oncol, 2021, 147(3): 821-833. DOI: 10.1007/s00432-020-03366-9.
[32]
SONG D J, WANG Y Y, WANG W T, et al. Using deep learning to predict microvascular invasion in hepatocellular carcinoma based on dynamic contrast-enhanced MRI combined with clinical parameters[J]. J Cancer Res Clin Oncol, 2021, 147(12): 3757-3767. DOI: 10.1007/s00432-021-03617-3.
[33]
YU Y X, HU C H, WANG X M, et al. Value of the application of enhanced CT radiomics and machine learning in preoperative prediction of microvascular invasion in hepatocellular carcinoma[J]. Natl Med J China, 2021, 101(17): 1239-1245. DOI: 10.3760/cma.j.cn112137-20200820-02425.
[34]
ZHANG W, YANG R, LIANG F, et al. Prediction of Microvascular Invasion in Hepatocellular Carcinoma with a Multi-Disciplinary Team-Like Radiomics Fusion Model on Dynamic Contrast-Enhanced Computed Tomography[J/OL]. Front Oncol, 2021, 11: 660629 [2022-08-20]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8008108/. DOI: 10.3389/fonc.2021.660629.
[35]
ZHANG Y, SHU Z, YE Q, et al. Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma via Multi-Parametric MRI Radiomics[J/OL]. Front Oncol, 2021, 11: 633596 [2022-08-20]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7968223/. DOI: 10.3389/fonc.2021.633596.
[36]
GAO F, QIAO K, YAN B, et al. Hybrid network with difference degree and attention mechanism combined with radiomics (H-DARnet) for MVI prediction in HCC[J]. Magn Reson Imaging, 2021, 83: 27-40. DOI: 10.1016/j.mri.2021.06.018.
[37]
LIU S C, LAI J, HUANG J Y, et al. Predicting microvascular invasion in hepatocellular carcinoma: a deep learning model validated across hospitals[J/OL]. Cancer Imaging, 2021, 21(1): 56 [2022-08-20]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8501676/. DOI: 10.1186/s40644-021-00425-3.
[38]
YANG Y, FAN W, GU T, et al. Radiomic Features of Multi-ROI and Multi-Phase MRI for the Prediction of Microvascular Invasion in Solitary Hepatocellular Carcinoma[J/OL]. Front Oncol, 2021, 11: 756216 [2022-08-20]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8529277/. DOI: 10.3389/fonc.2021.756216.
[39]
YANG Y H, ZHOU Y, ZHOU C, et al. Deep learning radiomics based on contrast enhanced computed tomography predicts microvascular invasion and survival outcome in early stage hepatocellular carcinoma[J]. Eur J Surg Oncol, 2022, 48(5): 1068-1077. DOI: 10.1016/j.ejso.2021.11.120.
[40]
MENG X P, TANG T Y, DING Z M, et al. Preoperative microvascular invasion prediction to assist in surgical plan for single hepatocellular carcinoma: better together with radiomics[J]. Ann Surg Oncol, 2022, 29(5): 2960-2970. DOI: 10.1245/s10434-022-11346-1.
[41]
RENZULLI M, MOTTOLA M, COPPOLA F, et al. Automatically Extracted Machine Learning Features from Preoperative CT to Early Predict Microvascular Invasion in HCC: The Role of the Zone of Transition (ZOT)[J/OL]. Cancers (Basel), 2022, 14(7): 1816 [2022-08-20]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8997857/. DOI: 10.3390/cancers14071816.
[42]
TIAN Y Q, HUA H, PENG Q Q, et al. Preoperative evaluation of Gd-EOB-DTPA-enhanced MRI radiomics-based nomogram in small solitary hepatocellular carcinoma (≤3 cm) with microvascular invasion: a two-center study[J]. J Magn Reson Imaging, 2022, 56(5): 1459-1472. DOI: 10.1002/jmri.28157.
[43]
JIANG T, HE S, YANG H, et al. Multiparametric MRI-based radiomics for the prediction of microvascular invasion in hepatocellular carcinoma[J/OL]. Acta Radiol, 2022, 30: 2841851221080830 [2022-08-20]. https://journals.sagepub.com/doi/10.1177/02841851221080830. DOI: 10.1177/02841851221080830.
[44]
GAO L, XIONG M, CHEN X, et al. Multi-Region Radiomic Analysis Based on Multi-Sequence MRI Can Preoperatively Predict Microvascular Invasion in Hepatocellular Carcinoma[J/OL]. Front Oncol, 2022, 12: 818681 [2022-08-20]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9094629/. DOI: 10.3389/fonc.2022.818681.
[45]
QU C, WANG Q, LI C, et al. A Radiomics Model Based on Gd-EOB-DTPA-Enhanced MRI for the Prediction of Microvascular Invasion in Solitary Hepatocellular Carcinoma ≤ 5 cm[J/OL]. Front Oncol, 2022, 12: 831795 [2022-08-20]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9160991/. DOI: 10.3389/fonc.2022.831795.
[46]
DUAN Y Y, ZHOU K P, BIAN J, et al. Predicting microvascular invasion of hepatocellular carcinoma based on non-contrast-enhanced MRI radiomics signature[J]. Chin J Magn Reson Imaging, 2020, 11(3): 195-200. DOI: 10.12015/issn.1674-8034.2020.03.007.
[47]
YANG G H, GUO B B, MA Z P, et al. The value of radiomic features to evaluate microvascular invasion in hepatocellular carcinoma preoperatively based on computed tomography[J]. Chin J Hepatobiliary Surg, 2020, 26(12): 901-906. DOI: 10.3760/cma.j.cn113884-20200311-00134.
[48]
QU C M, LI K, CAI P, et al. A model based on MRI radiomics features for prediction of microvascular invasion in hepatocellular carcinoma[J]. Chin J Bases Clin Gen Surg, 2021, 28(2): 175-180. DOI: 10.7507/1007-9424.202009112.
[49]
LIU C, ZHAO H B, HUANG J C, et al. Contrast-enhanced CT radiomics combined with support vector machine for preoperatively predicting microvascular invasion in hepatocellular carcinoma[J]. J Clin Radiol, 2021, 40(12): 2390-2396. DOI: 10.13437/j.cnki.jcr.2021.12.029.
[50]
WANG H, DU P C, WU M C, et al. Postoperative adjuvant transarterial chemoembolization for multinodular hepatocellular carcinoma within the Barcelona Clinic Liver Cancer early stage and microvascular invasion[J]. Hepatobiliary Surg Nutr, 2018, 7(6): 418-428. DOI: 10.21037/hbsn.2018.09.05.
[51]
HUANG J, TIAN W, ZHANG L, et al. Preoperative Prediction Power of Imaging Methods for Microvascular Invasion in Hepatocellular Carcinoma: A Systemic Review and Meta-Analysis[J/OL]. Front Oncol, 2020, 10: 887 [2022-08-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333535/. DOI: 10.3389/fonc.2020.00887.
[52]
QIU Q T, DUAN J H, DUAN Z Y, et al. Reproducibility and non-redundancy of radiomic features extracted from arterial phase CT scans in hepatocellular carcinoma patients: impact of tumor segmentation variability[J]. Quant Imaging Med Surg, 2019, 9(3): 453-464. DOI: 10.21037/qims.2019.03.02.
[53]
PARMAR C, RIOS VELAZQUEZ E, LEIJENAAR R, et al. Robust Radiomics feature quantification using semiautomatic volumetric segmentation[J/OL]. PLoS One, 2014, 9(7): e102107 [2022-11-10]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4098900/. DOI: 10.1371/journal.pone.0102107.
[54]
VELAZQUEZ E R, PARMAR C, JERMOUMI M, et al. Volumetric CT-based segmentation of NSCLC using 3D-Slicer[J/OL]. Sci Rep, 2013, 3: 3529 [2022-11-10]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3866632/. DOI: 10.1038/srep03529.

PREV Quantitative evaluation of abdominal fat distribution and visceral fat in young people based on mLIVE sequence
NEXT A comparative study on the clinical application of domestic hepatobiliary specific contrast agent and foreign hepatobiliary specific contrast agent Gd-EOB-DTPA
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn